10.01.2015 Views

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

50<br />

we obta<strong>in</strong> three coupled <strong>in</strong>tegral equations for Γ p , Γ A <strong>and</strong> Γ T . For a conf<strong>in</strong><strong>in</strong>g potential<br />

these quantities also diverge. We therefore <strong>in</strong>troduce<br />

h(|p|) = Γ p(|p|)<br />

ω(|p|)<br />

(5.8)<br />

<strong>and</strong><br />

where<br />

g(|p|) = Γ p(|p|) + 2B(|p|)Γ A (|p|) + 2|p|C(|p|)Γ T (|p|)<br />

ω 2 (|p|) − m 2 π /4 , (5.9)<br />

ω(|p|) = √ B 2 (|p|) + |p| 2 C 2 (|p|) . (5.10)<br />

<strong>The</strong> functions h(|p|) <strong>and</strong> g(|p|) are f<strong>in</strong>ite <strong>and</strong> satisfy the coupled <strong>in</strong>tegral equations<br />

h(|p|)ω(|p|) = 1 ∫ [<br />

]<br />

d 3 qV<br />

3π 2 C (k) h(|q|) +<br />

m2 π<br />

4ω(|q|) g(|q|) [ ]<br />

g(|p|) ω(|p|) −<br />

m2 π<br />

= h(|p|)+<br />

ω(|p|)<br />

∫<br />

1<br />

d 3 V C (|k|)<br />

q (M(|p|)M(|q|) + (ˆpˆq)|p||q|)g(|q|) , (5.11)<br />

3π 2 ˜ω(|p|)˜ω(|q|)<br />

where we <strong>in</strong>troduced<br />

˜ω(|p|) = √ M 2 (|p|) + p 2 . (5.12)<br />

For vector mesons (<strong>and</strong> correspond<strong>in</strong>gly axial-vector diquarks) the Bethe-Salpeter vertex<br />

function has four l<strong>in</strong>early <strong>in</strong>dependent amplitudes. <strong>The</strong> construction of the four coupled<br />

<strong>in</strong>tegral equations correspond<strong>in</strong>g to the BSE is analogous to the pseudoscalar case.<br />

<strong>The</strong> homogeneous BSE <strong>in</strong> equation (5.6) can be solved by <strong>in</strong>troduc<strong>in</strong>g an eigenvalue<br />

λ(P 2 = M 2 ) with M the bound-state mass. One then f<strong>in</strong>ds M such that λ = 1 for mesons<br />

<strong>and</strong> λ = 2 for diquarks. <strong>The</strong> numerical solution of the BSEs can be performed as <strong>in</strong><br />

[OVSA02].<br />

We studie the Bethe-Salpeter amplitudes as µ IR → 0: the results for g <strong>and</strong> h of<br />

(5.11) are presented <strong>in</strong> figs. 5.2 <strong>and</strong> 5.3 for the pion <strong>and</strong> scalar diquark, respectively. For<br />

convenience, the normalisation of the amplitudes has been chosen such that h(0) = 1. We<br />

note, however, that IR-cancellations appear<strong>in</strong>g <strong>in</strong> the pion case lead to a stable h as well<br />

as ratio of g/h, which is not the case (as one would naively expect) <strong>in</strong> the diquark case:<br />

there g/h ∼ µ IR → 0 <strong>and</strong> h ∼ 1/ √ µ IR .<br />

<strong>The</strong> curve for λ(P 2 ) gets less <strong>in</strong>cl<strong>in</strong>ed with smaller values of the <strong>in</strong>frared regulator µ IR ,<br />

<strong>and</strong> its <strong>in</strong>tersection po<strong>in</strong>t with λ = 1 stabilises <strong>in</strong> the limit µ IR → 0. As a consequence,<br />

while the meson mass is stable, the mass eigenvalue for the correspond<strong>in</strong>g diquark state<br />

(correspond<strong>in</strong>g to λ(M) = 2) <strong>in</strong>creases like 1/µ IR , ultimately completely remov<strong>in</strong>g these

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!