10.01.2015 Views

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 6. Nucleon Form Factors <strong>in</strong> a Covariant Diquark-<strong>Quark</strong> model 65<br />

gauge approach: r (ud)0 + ≈ 1.1 r π. <strong>The</strong> Bethe-Salpeter amplitude is canonically normalised<br />

[IZ] via:<br />

[ ] K ∂<br />

2 =−m 2 J<br />

2 K µ = Π(K, Q)<br />

P<br />

, (6.41)<br />

∂Q µ Q=K<br />

∫ d 4 q<br />

Π(K, Q) = tr<br />

(2π) ¯Γ(q; −K) S(q + Q/2) Γ(q; K) S T (−q + Q/2). (6.42)<br />

4<br />

A solution of the BSE equation requires a simultaneous solution of the quark-DSE<br />

[Mar02]. However, s<strong>in</strong>ce we have already chosen to simplify the calculations by parametris<strong>in</strong>g<br />

S(p), we also employ that expedient with Γ JP , us<strong>in</strong>g the follow<strong>in</strong>g one-parameter forms:<br />

Γ 0+ (k; K) =<br />

1<br />

H a Ciγ 5 iτ 2 F(k 2 /ω 2<br />

N 0+ 0 +) , (6.43)<br />

t i Γ 1+<br />

µ (k; K) = 1<br />

H a iγ µ Ct i F(k 2 /ω 2<br />

N 1+ 1 +) , (6.44)<br />

with the normalisation, N JP , fixed by equation (6.41). <strong>The</strong>se Ansätze reta<strong>in</strong> only that<br />

s<strong>in</strong>gle Dirac-amplitude which would represent a po<strong>in</strong>t particle with the given quantum<br />

numbers <strong>in</strong> a local Lagrangian density: they are usually the dom<strong>in</strong>ant amplitudes <strong>in</strong> a<br />

solution of the ra<strong>in</strong>bow-ladder BSE for the lowest mass J P diquarks [Mar02].<br />

Diquark propagators<br />

Calculations beyond ra<strong>in</strong>bow-ladder truncation elim<strong>in</strong>ate asymptotic diquark states from<br />

the spectrum. It is apparent <strong>in</strong> reference [BHK + 04] that the behaviour of the diquark<br />

propagator ∆ JP can be modelled efficiently by simple functions that are free-particle-like<br />

at spacelike momenta but pole-free on the timelike axis. Hence we employ<br />

∆ 0+ (K) =<br />

∆ 1+<br />

µν(K) =<br />

1<br />

F(K 2 /ω 2<br />

m 2 0 +) , (6.45)<br />

0<br />

(<br />

+ δ µν + K )<br />

µK ν 1<br />

F(K 2 /ω<br />

m 2 1<br />

m 2 1 2 +) , (6.46)<br />

+ 1 +<br />

where the two parameters m J P are diquark pseudoparticle masses <strong>and</strong> ω J P are widths<br />

characteris<strong>in</strong>g Γ JP . Here<strong>in</strong> we require additionally that<br />

( ) ∣<br />

−1<br />

d 1<br />

∣∣∣∣K<br />

F(K 2 /ω 2<br />

dK 2 m 2 J<br />

) = 1 ⇒ ω 2 P J<br />

= 1 P 2 m2 J<br />

, (6.47)<br />

P<br />

J P 2 =0<br />

which is a normalisation that accentuates the free-particle-like propagation characteristics<br />

of the diquarks with<strong>in</strong> the hadron.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!