14.11.2012 Views

Conformal Geometric Algebra in Stochastic Optimization Problems ...

Conformal Geometric Algebra in Stochastic Optimization Problems ...

Conformal Geometric Algebra in Stochastic Optimization Problems ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5.3. GAUSS-HELMERT MODEL BASED ESTIMATION 171<br />

Comb<strong>in</strong><strong>in</strong>g all conditions <strong>in</strong>to a s<strong>in</strong>gle block matrix equation then gives<br />

⎡ ⎤ ⎡<br />

X1 Z1<br />

⎢ ⎥ ⎢<br />

⎢<br />

⎣ .<br />

⎥<br />

⎦∆θ<br />

+ ⎢<br />

⎣<br />

. ..<br />

0<br />

⎤ ⎡ ⎤ ⎡<br />

∆y1 z<br />

⎥ ⎢ ⎥ ⎢<br />

⎥ ⎢<br />

⎦ ⎣ .<br />

⎥<br />

⎦ = ⎢<br />

⎣<br />

Xk<br />

� �� � �<br />

0<br />

��<br />

Zk<br />

� �<br />

∆y1<br />

�� �<br />

=: X =: Z =: ∆y<br />

′ 1<br />

.<br />

z ′ ⎤<br />

⎥<br />

⎦<br />

k<br />

� �� �<br />

=: z ′ ,<br />

g<br />

where X ∈ � Ng×M , Z ∈ � Ng×K , ∆y ∈ � K and correspond<strong>in</strong>gly z ′ g ∈ � Ng .<br />

Fig. 5.4: Situation after the t th iteration: estimated values should <strong>in</strong> each iteration<br />

fulfill the G-condition. After l<strong>in</strong>earization, the relation ∆y = ǫ − (ˆy [t] − y) has to<br />

be obeyed, cf. [34].<br />

Tak<strong>in</strong>g <strong>in</strong>to account the situation depicted <strong>in</strong> figure 5.4 the important relation<br />

∆y = ǫ − (ˆy [t] − y) (5.27)<br />

can be <strong>in</strong>ferred. This is, for example, shown by Förstner <strong>in</strong> [34]. It follows that<br />

−z ′ g + Z∆y + X∆θ = g(ˆy [t] , ˆ θ [t] ) + Z(y − ˆy [t] ) + Zǫ + X∆θ<br />

= g(y, ˆ θ [t] )<br />

� �� �<br />

=: −zg<br />

+ Zǫ + X∆θ,<br />

where the unprimed zg denotes the contradictions. Hence by means of the block<br />

Jacobians X and Z, the pendant of the GH-model (5.21) <strong>in</strong> terms of the residuals is<br />

The Constra<strong>in</strong>t Equations<br />

X∆θ + Zǫ = zg. (5.28)<br />

The respective Taylor series expansion of first order for the H-constra<strong>in</strong>t reads<br />

h( ˆ θ [t] + ∆θ) ≈ h( ˆ θ [t] ) + ∂h<br />

∂θ (ˆ θ [t] ) ∆θ<br />

= −zh + H∆θ.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!