14.11.2012 Views

Conformal Geometric Algebra in Stochastic Optimization Problems ...

Conformal Geometric Algebra in Stochastic Optimization Problems ...

Conformal Geometric Algebra in Stochastic Optimization Problems ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.2. BASIC CONCEPTS OF GA 53<br />

Example 2.8 ( Basis orthogonalization ):<br />

Here the orthogonal complement of [A 〈k〉 \ai] <strong>in</strong> A 〈k〉 is to be analyzed. Let A 〈k〉 be<br />

a non-null blade, i.e. A2 〈k〉 �= 0, with basis {a1...k }. Then<br />

�<br />

[A 〈k〉 \ai] A 〈k〉 = [A 〈k〉 \ai] [A 〈k〉 \ai] ∧ (−1) k−i �<br />

ai<br />

Hence with<br />

it follows ∀i,j ∈ [1,k] � :<br />

= (−1) k−i [A 〈k〉 \ai] 2 ai⊥.<br />

bi := (−1) k−i [A 〈k〉 \ai] A 〈k〉<br />

[A 〈k〉 \ai] 2 ,<br />

i �= j ⇐⇒ bi · aj = 0<br />

Start<strong>in</strong>g from the expansion of a · A [k] , given <strong>in</strong> equation (2.23), it is now be<strong>in</strong>g<br />

focused on the expansion of a · A 〈k〉 : proposition 2.7 is of fundamental significance<br />

as it, for example, expresses a k<strong>in</strong>d of distributive law for the <strong>in</strong>ner product over<br />

the outer product.<br />

Proposition 2.7<br />

Given a vector a and a blade B 〈l〉 = � l<br />

i=1 bi the follow<strong>in</strong>g expansion can be used<br />

a · B 〈l〉 =<br />

l�<br />

(−1) i−1 (a · bi) [B 〈l〉 \bi]<br />

i=1<br />

Proof: Let B = b1b2 ...bl the geometric product of the vectors {b1...l } such that<br />

a · B 〈l〉 = a · 〈B〉 l = 〈a · B〉 l−1 . Consequently, it is<br />

a · B 〈l〉 = 1<br />

�<br />

2 a 〈B〉 l − (−1) l �<br />

〈B〉 la � � l<br />

= aB − (−1) Ba �<br />

� 1<br />

2<br />

Accord<strong>in</strong>g to the derivations on page 30, the <strong>in</strong>ner term can be replaced as<br />

�<br />

l�<br />

�<br />

a · B 〈l〉<br />

=<br />

=<br />

=<br />

i=1<br />

l−1 .<br />

(−1) i−1 (a · bi)b1b2 ... ˇ bi ...bl<br />

l�<br />

(−1) i−1 (a · bi) 〈b1b2 ... ˇ bi ...bl〉 l−1<br />

i=1<br />

l−1<br />

l�<br />

(−1) i−1 (a · bi) 〈b1b2 ... ˇ bi ...bl〉 l−1<br />

� �� �<br />

[B 〈l〉 \bi]<br />

i=1<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!