14.11.2012 Views

Conformal Geometric Algebra in Stochastic Optimization Problems ...

Conformal Geometric Algebra in Stochastic Optimization Problems ...

Conformal Geometric Algebra in Stochastic Optimization Problems ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.2. BASIC CONCEPTS OF GA 45<br />

Corollary 2.9<br />

The <strong>in</strong>ner product of two blades A 〈k〉 and B 〈l〉 can be expressed by means of the<br />

commutator formalism, that is<br />

�<br />

... × − (ak−2× − (ak−1× − (ak × − B 〈l〉 )))..., l even<br />

A 〈k〉 · B 〈l〉 =<br />

... × − (ak−2× − (ak−1× − (ak × − B 〈l〉 )))..., l odd.<br />

The commutator expressions can be further expanded with the help of equation<br />

(A.11) and equation (A.12): if the grade l of B 〈l〉 is even (odd), the former (latter)<br />

equation has to be used.<br />

Example 2.5 ( Expanded <strong>in</strong>ner product ):<br />

The <strong>in</strong>ner product (a1 ∧ a2 ∧ a3) · B 〈5〉 may be expanded as<br />

a1× − (a2× −(a3× − B 〈5〉 ))<br />

(A.12)<br />

= + a1a2a3B 〈5〉 + a1a2B 〈5〉 a3 − a1a3B 〈5〉 a2<br />

− a1B 〈5〉 a3a2 + a2a3B 〈5〉 a1 + a2B 〈5〉 a3a1<br />

− a3B 〈5〉 a2a1 − B 〈5〉 a3a2a1.<br />

Note that chang<strong>in</strong>g the sign of the underl<strong>in</strong>ed summands (with an odd number of<br />

trail<strong>in</strong>g vectors) yields the outer product, see equation (A.11).<br />

Proposition 2.5<br />

Let A and B denote two general multivectors of �p,q. It then holds that<br />

〈AB〉 = 〈BA〉.<br />

Proof: Let A = �n i=0 〈A〉 i and B = �n j=0 〈B〉 j . It follows that<br />

�<br />

n�<br />

�<br />

〈AB〉 = 〈A〉 i 〈B〉 j =<br />

i,j=0<br />

n�<br />

i,j=0<br />

and further by the def<strong>in</strong>ition 2.3 of the <strong>in</strong>ner product<br />

〈AB〉 =<br />

n�<br />

i,j=0<br />

δij<br />

� �<br />

〈A〉 i 〈B〉 j<br />

= 〈A〉〈B〉 +<br />

� �<br />

〈A〉 i 〈B〉 j<br />

Accord<strong>in</strong>g to corollary 2.6, it is 〈A〉 i ·〈B〉 i = 〈B〉 i ·〈A〉 i . Hence<br />

〈AB〉 = 〈B〉〈A〉 +<br />

n�<br />

〈A〉 i · 〈B〉 i .<br />

i=1<br />

n�<br />

〈B〉 i · 〈A〉 i = ... = 〈BA〉.<br />

i=1<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!