17.11.2012 Views

aluminium in commercial vehicles - European Aluminium Association

aluminium in commercial vehicles - European Aluminium Association

aluminium in commercial vehicles - European Aluminium Association

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EUROPEAN ALUMINIUM ASSOCIATION ALUMINIUM IN COMMERCIAL VEHICLES CHAPTER VI 65<br />

Class 1 Class 2 Class 3 Class 4<br />

Cross-sections that can<br />

form a plastic h<strong>in</strong>ge with<br />

the rotation capacity<br />

required for plastic analy-<br />

sis without reduction of<br />

the resistance.<br />

The resistance may be<br />

calculated on the basis<br />

of plastic behaviour tak<strong>in</strong>g<br />

the material harden<strong>in</strong>g<br />

effect <strong>in</strong>to account.<br />

Rules are given <strong>in</strong> EN<br />

1999-1-1. Annex F.<br />

EN 1999-1-1, 6.1.4 gives rules<br />

how to classify any cross-section.<br />

A β value (i.e. width to thickness<br />

ratio) is calculated as:<br />

β = η . b<br />

t<br />

where:<br />

b = the width of a cross-section<br />

part<br />

7.2. Load bear<strong>in</strong>g resistance<br />

The load bear<strong>in</strong>g resistance shall<br />

always be higher than the factored<br />

load effects.<br />

Cross-section that can<br />

develop their plastic<br />

moment resistance, but<br />

have limited rotation<br />

capacity.<br />

The resistance may be<br />

calculated on the basis<br />

of perfectly plastic<br />

behaviour for the material<br />

us<strong>in</strong>g the conventional<br />

elastic limit as the limit<br />

value. Rules are given <strong>in</strong><br />

EN 1999-1-1. Annex F.<br />

TABLE VI.2<br />

Cross-section where the<br />

calculated stress <strong>in</strong> the<br />

extreme fibre of the <strong>alum<strong>in</strong>ium</strong><br />

member can<br />

reach its proof strength.<br />

The resistance is calculated<br />

on the basis of<br />

elastic design.<br />

t = the correspond<strong>in</strong>g thickness<br />

η = a value depend<strong>in</strong>g on the<br />

stress situation and if the part is<br />

an outstand or an <strong>in</strong>ternal crosssection<br />

part<br />

Limits are given for the β value<br />

for the different classes and for<br />

welded or unwelded parts and<br />

for outstand or <strong>in</strong>ternal parts.<br />

Most <strong>alum<strong>in</strong>ium</strong> structures <strong>in</strong><br />

EN 1999-1-1 gives rules for calculat<strong>in</strong>g<br />

the load bear<strong>in</strong>g resistances<br />

for different k<strong>in</strong>ds of members<br />

exposed by different load<br />

effects. In the Table VI.3, some of<br />

Cross-section that will get<br />

local buckl<strong>in</strong>g before<br />

atta<strong>in</strong>ment of proof stress<br />

<strong>in</strong> one or more parts of<br />

the cross-section.<br />

The resistance is calculated<br />

on basis of an effective<br />

cross-section. Rules<br />

for calculat<strong>in</strong>g the effective<br />

cross-section are<br />

given <strong>in</strong> EN 1999-1-1,<br />

6.1.5<br />

<strong>commercial</strong> <strong>vehicles</strong> will be optimised<br />

regard<strong>in</strong>g weight. Cross<br />

section classes 1 and 2 will therefore<br />

seldom be used. Elastic<br />

design <strong>in</strong> cross section class 3 and<br />

4 will be the normal situation.<br />

these rules are listed, and references<br />

are given:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!