11.07.2015 Views

Standard X-ray Diffraction Powder Patterns

Standard X-ray Diffraction Powder Patterns

Standard X-ray Diffraction Powder Patterns

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

c ^r.


THE NATIONAL BUREAU OF STANDARDSThe National Bureau of <strong>Standard</strong>s is a principal focal point in the Federal Government forassuring maximum application of the physical and engineering sciences to the advancement oftechnology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for makingmeasurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures,and making such tests as may be necessary, particularly for government agencies; cooperationin the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention anddevelopment of devices to serve special needs of the government; assistance to industry, business, and consumers in the development and accceptance of commercial standards and simplifiedtrade practice recommendations; administration of programs in cooperation with United Statesbusiness groups and standards organizations for the development of international standardsof practice; and maintenance of a clearinghouse for the collection and dissemination of scientific,technical, and engineering information. The scope of the Bureau's activities is suggested inthe following listing of its four Institutes and their organizational units.Institute for Basic <strong>Standard</strong>s. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics, Physical Chemistry. Laboratory Astrophysics.* Radio <strong>Standard</strong>s Laboratory: Radio <strong>Standard</strong>s Physics; Radio <strong>Standard</strong>s Engineering.** Office of <strong>Standard</strong> Reference Data.Institute far Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of <strong>Standard</strong> ReferenceMaterials.Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and SpacePhysics.Institute for Applied Technology. Textiles and Apparel Technology Center. BuildingResearch. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office ofWeights and Measures. Office of Engineering <strong>Standard</strong>s. Office of Industrial Services.*NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.**Located at Boulder, Colorado.


UNITED STATES DEPARTMENT OF COMMERCE Luther H. Hodges, SecretaryNATIONAL BUREAU OF STANDARDS A. V. Astin, Director<strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong><strong>Powder</strong> <strong>Patterns</strong>Howard E. Swanson, Marlene Cook Morris,Eloise H. Evans, and Linda UlmerNational Bureau of <strong>Standard</strong>s Monograph 25 Section 3Issued July 31, 1964For sale by the Superintendent of Documents, U.S. Government Printing OfficeWashington, D.C., 20402 - Price 40 cents


Library of Congress Catalog Card Number: 53-61386


Introduction.. _ _______________________________<strong>Standard</strong> x-<strong>ray</strong> powder patterns:Aluminum 3:2 Silicate (mullite), 3Al2O 3 -2SiO 2(orthorhombic) _ ________-__-___--__---_--Ammonium Fluoberyllate, (NH 4) 2BeF4 (orthorhombic)___ ___________--------_--__---__Ammonium Fluoborate, NH 4BF 4 (orthorhombic) _*Antimony Selenide, Sb 2Se3 (orthorhombic) _____*Antimony Telluride, Sb 2Te3 (trigonal)_________*Arsenic Trioxide, claudetite, As2O 3 (monoclinic)_ _______________-_-_---_-___-_____*Barium Bromide Monohydrate, BaBr 2-H 2O(orthorhombic) __ _ __-__-__-_--__---_-_--_Barium Stannate, BaSnO 3 (cubic)_____________Bismuth Orthophosphate, BiPO4 (monoclinic) ___*Bismuth Orthophosphate, BiPO4 (trigonal) _____*Bismuth Orthovanadate (low form), BiVO4(tetragonal) __ ____._..__-__-_--_..--_-_____*Bismuth Orthovanadate (high form) BiVO 4(monoclinic) _-__-__--___-__---___-___---.__Bismuth Telluride, (tellurobismuthite), Bi2Te3(trigonal) _ _ _____________________________Bismuth Trioxide, alpha (bismite), Bi2O 3 (pseudoorthorhombic)____________________________*Cadmium Perchlorate Hexahydrate Cd(ClO4) 2 -6H 2O (trigonal)_._._______----__--___--_--Cadmium Sulfate, CdSO4 (orthorhombic) _______Cadmium Telluride, CdTe (cubic)_____________Calcium Fluoride Phosphate, (fluorapatite),Ca 5F(PO4) 8 (hexagonal) ____________________*Cerium Niobium Titanium Oxide, (eschynite),CeNbTiO 6 (orthorhombic) __________________*Cesium Chromate, Cs2CrO4 (orthorhombic)____Cesium Fluoride, CsF (cubic) _________________*Cobalt Fluosilicate Hexahydrate, CoSiF 6-6H 2O(trigonal) _________________________________*Cobalt Perchlorate Hexahydrate, Co(ClO 4 ) 2 -6H 20 (hexagonal)_________________________Copper Sulfate, (chalcocyanite), CuSO 4 (orthorhombic)_________________________________* Dysprosium Arsenate, DyAsO 4 (tetragonal) ____*Erbium Arsenate, ErAsO4 (tetragonal)________ContentsPage156781011111314141617192021222425262728293031Page*Europium Arsenate, EuAsO4 (tetragonal) ______ 32*Gallium Arsenide, GaAs (cubic)______________ 33*Holmium Arsenate, HoAsO4 (tetragonal) ______ 34Indium Arsenide, InAs (cubic)________________ 35*Lanthanum Arsenate, LaAsO4 (monoclinic) ____ 36*Lanthanum Niobium Titanium Oxide, LaNb-TiO 6 (monoclinic)_________________________ 37Lithium Phosphate, low form, (lithiophosphate),Li 3PO4 (orthorhombic) _________ __ _________ 38Lithium Phosphate, high form, Li3PO4 (orthorhombic)_________________________________39Magnesium Ammonium Phosphate Hexahydrate,(struvite), MgNH 4PO4 -6H 2O (orthorhombic) __ 41Potassium Chlorate, KC1O 3 (monoclinic) _______ 42*Potassium Lithium Sulfate, KLiSO4 (hexagonal)___________________________________ 43* Potassium Perchromate, K 3CrO 8 (tetragonal) _ _ 44*Potassium Zinc Decavanadate 16 Hydrate,K 2Zn 2V10 O28- 16H 2O (triclinic)________________ 45*Rubidium Chromate, Rb 2CrO 4 (orthorhombic) _ 46*Silver Antimony Telluride, AgSbTe2 (cubic)____ 47*Sodium Magnesium Aluminum Boron, HydroxySilicate, dravite, NaMg3Al6B3Si6O27(OH) 4 (trigonal),.... ________________________________ 47Sodium Trimetaphosphate, Na 3P3Oe (orthorhombic)_________________________________ 49Sodium Trimetaphosphate Monohydrate, Na3-P 3O 9 -H 2O, (orthorhombic) __________________ 50*Stannous Fluoride, SnF 2 (monoclinic) _________ 51*Strontium 1:1 Borate, SrO-B2O 3 (orthorhombic) _ 53*Terbium Arsenate, TbAsO4 (tetragonal)_______ 54*Thallium Chromate, Tl2CrO 4 (orthorhombic)___ 54*Thulium Arsenate, TmAsO 4 (tetragonal) ______ 56Titanium Dioxide brookite, TiO 2 (orthorhombic)_________________________________ 57Zinc Telluride, ZnTe (cubic) __________________ 58Cumulative index to Circular 539, Volumes 1, 2,3, 4, 5, 6, 7, 8, 9, and 10, and Monograph 25,Sections 1, 2, and 3_ _______________________ 59Cumulative mineral index ____________________ 64ErrataCircular 539Vol. 1, Page 50, In the pattern of Swanson and Tatge, the d-values 0.8576, 0.8557,0.8467, 0.8412, and 0.8383 should have the following hkl values, 422, 511,513, 333, and 206.Vol. 2, Page 46, Lattice constants paragraph, column 1, line 3: Puma should readPnma. This change was made in the Vol. 2 reprint.Vol. 3, Page 54, On the line below hkl 121 insert hkl 012; on the line below hkl 200insert hkl 031; hkl 040 should read 211; delete hkl values 230 and 410 and allthose following 421.Vol. 5, Page 10, Column 1, bottom line, the index of refraction should read 1.710.Page 11, In pattern of Swanson, Gilfrich, and Ugrinic, for hkl 721 d shouldread 2.078.Page 43, Reference No. 3: The fourth author's name should be F. E. Sennett,Vol. 8, Page 42, Column 1: The density should be 4.697.Page 65, Ti5Sia should have 2 molecules per unit cell and the density 4.376.Vol. 9, Page 6, (NH4) 2PtBr6 table: Cu radiation applies to entire table.ill


Monograph 25Sec. 2, Page 22, Insert this data:Errata—ContinuedPage 19, hkl 102 should be 012.Page 47, The density of K 3ZrF 7 should be 3.123.Monograph 25Sec. 1, Page 10, Lattice constants table: headings a b c should read b c a.Page 12, The title should read: Erbium Gallium Oxide 3:5. ...Sec. 2, Page 1, Column 2 line 11: potassium nitroso chlororhenate should bepotassium nitroso chlororuthenate.Page 2, In the left hand column, the sentence beginning in the seventh linefrom the bottom should read: Factors for converting integrated intensities topeak height intensities are on the left side of the chart.Page 8, CdWO 4 space group should be CJ h P2/c (No. 13).Page 11, Spectrographic analysis should read: 0.01 to 0.1 percent sodiumand ....Page 34, The intensity of the line at d = 4.21 should be 61. Insert the reading:hkl = W2, d = 3.94, 1 = 2.Page 35, Refe/ence No. 7 should read: Helen M. Ondik, to be published inActa Cryst.Addendahkl93096510.8-213-5-014-3-3d1. 28431.0225.9398.8408. 8329/a


STANDARD X-RAY DIFFRACTION POWDER PATTERNSSection 3—Data for 51 SubstancesHoward £. Swanson, Marlene Cook Morris, 1Eloise H. Evans, 1 and Linda Ulmer<strong>Standard</strong> x-<strong>ray</strong> diffraction powder patterns are presented for the following fifty-onesubstances: 3Al 2O3-2SiO2 , (mullite); (NH 4) 2BeF 4 ; NH 4BF 4 ; Sb2Se3 *; Sb 2Te3 *; As 2 O 3 *,claudetite; BaBr2 -H 2O*; BaSnO 3 ; BiPO 4 (monoclinic); BiPO 4 * (trigonal); BiVO4 * (tetragonal); BiV0 4 * (monoclinic); Bi2Te 3, (tellurobismuthite); Bi2 O 3 , (bismite); Cd(ClO 4 ) 2-6H 2O*;CdSO 4 ; CdTe; Ca6F(PO 4)s, (fluorapatite); CeNbTi0 8 *, (eschynite); Cs2CrO 4 *; CsF; CoSiF 6-6H 2O*; Co(ClO 4 ) 2-6H 2O*; CuSO 4 , (chalcocyanite); DyAsO 4 *; ErAsO 4 *; EuAsO 4 *; GaAs*;HoAsO4 *; In As; LaAsO4 *; LaNbTiO 6 *; Li 3PO 4 , (lithiophospbate) low form; Li 3PO 4 highform; MgNH 4PO4 .6H 2O, (struvite); KC1O 3 ; KLiSO 4 *; K 3CrO 8 *; K2Zn 2VioO28-16H 2O*; Rb2-CrO4 *; AgSbTe2 *; NaMg 3Al 6B 3Si6O27(OH) 4 *, dravite; Na 3P3O d ; Na 3P3O9-H 2O; SnF2 *; SrO-B 2O 3 *;TbAsO 4*; TlCrO 4*; TmAsO 4 *; TiO2 , brookite; and ZnTe. Twenty-one are to replace patternsalready given in the X-<strong>ray</strong> <strong>Powder</strong> Data File issued by the American Society for Testingand Materials, and thirty patterns indicated by asterisks are for substances not previouslyincluded. The patterns were made with a Geiger counter x-<strong>ray</strong> diffractometer, usingsamples of high purity. When possible, the rf-values were assigned Miller indices determinedby comparison with calculated interplanar spacings and from space group extinctions. Thedensities and lattice constants were calculated, and the refractive indices were measuredwhenever possible.INTRODUCTIONThe X-<strong>ray</strong> <strong>Powder</strong> Data File [1] 2 is a compilationof diffraction patterns from many sources and isused for the identification of unknown crystallinematerials by matching spacing and intensitymeasurements. The National Bureau of <strong>Standard</strong>s in its program 3 for the revision andevaluation of published x-<strong>ray</strong> data for the X-<strong>ray</strong><strong>Powder</strong> Data File presents data in this reportfor 51 compounds. This compilation is thethirteenth of a series of "<strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Patterns</strong>.' 74 The designation "Circular539" used for the first 10 volumes has beendiscontinued in favor of the new series, "Monograph 25." This compilation is the third sectionof the new series Monograph 25. Included arepatterns recommended to replace data on 26cards now present in the File. The other patternsare for 30 compounds not included in the File.These compounds are: antimony selenide; antimony telluride; arsenic oxide, claudetite; bariumbromide monohydrate; bismuth orthophosphate(trigonal); bismuth orthovanadate (tetragonal); bismuth orthovanadate (monoclinic); cadium perchloratehexahydrate; cerium niobium titanium oxide,eschynite; cesium chromate; cobalt fluosilicate* Research Associate at the National Bureau of <strong>Standard</strong>s sponsored bythe Joint Committee on Chemical Analysis by <strong>Powder</strong> <strong>Diffraction</strong> Methods.2 Figures in brackets indicate the literature references at the end of eachsection of this paper.3 This project is sponsored by the Joint Committee on Chemical Analysisby <strong>Powder</strong> <strong>Diffraction</strong> Methods. This committee is composed of membersfrom the American Society for Testing and Materials, the American CrystallographicAssociation, and the British institute of Physics. Financial supportis also provided by the National Bureau of <strong>Standard</strong>s.* Other volumes were published as follows: Circular 639 Vol. 1 and Vol. 2,June 1953; Vol. 3, June 1654; Vol. 4, March 1955; Vol. 5, October 1955; Vol. 6,September 1956; Vol. 7, September 1957; Vol. 8, April 1959; Vol. 9, February1960; Vol. 10, September 1960; Monograph 25 Section 1, March 1962; andSection 2, May 1963.hexahydrate; cobalt perchlorate hexahydrate;dysprosium arsenate; erbium arsenate; europiumarsenate; gallium arsenide; holmium arsenate;lanthanum arsenate; lanthanum niobium titaniumoxide; potassium lithium sulfate; potassium perchromate;potassium zinc decavanadate 16-hydrate;rubidium chromate; silver antimony telluride ; sodium magnesium aluminum boron hydroxysilicate, dravite; stannous fluoride; strontium 1:1borate; terbium arsenate; thallium chromate;and thulium arsenate.The experimental procedure and general plan ofthis Monograph section 3 have not changed greatlyfrom previous publications. However, the basictechnique is discussed, in this section, with minorchanges.<strong>Powder</strong> data cards. Under this heading aregiven the <strong>Powder</strong> Data File card numbers, thethree strongest lines, and the literature referencesfor each card. Cards listed through the 1962 indexto the <strong>Powder</strong> Data File are included in the table.Additional published patterns. Literature references for patterns that have not been published as<strong>Powder</strong> Data cards are listed.NBS sample. Many of the samples used tomake NBS patterns were special preparations ofhigh purity obtained from a variety of sources orrepared in small quantities in our laboratory byP . deGroot. Unless otherwise noted, the spectrographicanalyses were done at NBS after preparation of the sample was completed. The limitof detection for the alkali elements was 0.05 percent for the spectrographic analysis. A microscopic inspection for phase purity was made on thenonopaque materials during the refractive indexdetermination. Another check of phase purity was


usually provided by the x-<strong>ray</strong> pattern itself, whenit was indexed by comparison with theoretical^-values. Treating the sample by appropriateannealing, recrystallization, or heating in hydro thermal bombs improved the quality of most ofthe patterns. The refractive index measurementswere made by grain-immersion methods in whitelight, using oils standardized in sodium light, andcovering the range 1.40 to 2.00.X-<strong>ray</strong> techniques. At least three patterns forintensity measurements were prepared to checkreproducibility. Samples that gave satisfactoryintensity patterns usually had an average particlesizesmaller than 10 i*. [2]. In order to avoid theorientation effects when samples are packed orpressed, a sample holder was made that had anextended rectangular cavity open at its top faceand end. To prepare the sample, a glass slidewas clamped over the top face to form a temporarycavity wall. (See fig. 1.) The powdered samplewas then drifted into the remaining end openingwhile the holder was held in a vertical position.With the sample holder returned to a horizontalposition, the glass slide was carefully removed sothat the sample surface could be exposed to thex-<strong>ray</strong> beam (as shown in fig. 2). To powdersthat did not flow readily or were prone to orientexcessively, approximately 50-volume percent offinely-ground silica-gel was added as a diluent.The intensities of the diffraction lines were measured as peak heights above background and wereexpressed in percentages of the intensity of thestrongest line. Additional patterns were obtainedfor d-value measurements. Specimens for thesepatterns were prepared by packing into a shallowholder a sample containing approximately 5-wtpercent tungsten powder that served as an internalstandard. When tungsten lines were found tointerfere, 25 percent silver was used in place oftungsten. If the internal standard correctionvaried along the length of the pattern, linearinterpolations were used for the regions betweenthe peaks of the standard. For low values of 26,the pattern peak was measured in the center, at aplace averaging about 75 percent of the peakheight. For higher values of 26, where the on and«2 peaks were separated, the ai peak was measuredin the same way. The internal standard correction appropriate to each region was then appliedto the measurement of 26. The internal standardlattice constants used were 3.1648 A for tungstenand 4.0861 A for silver at 25 C. as determined byJette and Fopte [3]. All of the NBS patterns,unless otherwise noted, are made at 25 C, usingeither filtered copper or cobalt radiation (Ken),o ohaving the wavelengths 1.5405 A, and 1.7889 A,respectively.Structural data. For cubic materials a valuefor the lattice constant was calculated for eachd-value. However, the constant reported is thatobtained by averaging the last five lines becauseof the greater accuracy of measurement in thelarge-angle region of the pattern. The unit cellvalues for each noncubic substance were determined by means of a least-squares calculationmade on the IBM 7090, using those d-values forwhich only one set of Miller indices could beassigned. The number of significant figuresreported for {/-values in the NBS pattern is limitedby the quality of each sample as indicated byresiduals obtained from least squares refinement.A portion of the indexing and cell refinementcalculation was performed on a Burroughs B 220computer at the United States Geological Surveyusing a program developed by H. T. Evans, Jr.FIGURE 1 FIGURE 2


D. E. Appleman, and D. Handworker. Latticeconstant errors are given only for data refined onthat program and are based on least squaresrefinement of the variance-covariance matrixderived from the unweighted A0 residuals.Published unit cell data in kX units wereconverted to angstrom units using the factor1.00202 as recommended by an internationalconference of crystallographers [4].The space groups are listed with both theSchoenflies and short Hermann-Mauguin symbolsas well as the space group numbers given in theInternational Tables for X-<strong>ray</strong> Crystallography[5],Orthorhombic cell dimensions are presentedaccording to the Dana convention [6] 6>a>c.The densities calculated from the NBS latticeconstants are expressed in grams per cubiccentimeter and are computed with atomic weightsbased on carbon 12 [7], and the Avogadro number(6.02252 X10 23 ).References[1] Index to the X-<strong>ray</strong> <strong>Powder</strong> Data File, AmericanSociety for Testing and Materials, 1916 Race Street.Philadelphia 3, Pa. (1962).[2] L. Alexander, H. P. Klug, and E. Kummer, Statisticalfactors affecting the intensity of x-<strong>ray</strong>s diffracted bycrystalline powders, J. Appl. Phys. 19, No. 8,742-753 (1948).[3] E. R. Jette and F. Foote, Precision determination oflattice constants, J. Chem. Phys. 3, 605-616 (1935).[4] The conversion factor for kX units to angstrom units,J. Sci. Inst. 24,27 (1947).[5] International Tables for X-<strong>ray</strong> Crystallography, 1,1952.[6] Dana's System of Mineralogy, 1, 6 (1944).[7] International Union of Pure and Applied Chemistry,Chem. Eng. News, Nov. 20, 43 (1961).Aluminum 3:2 Silicate (mullite)* 3A12O3 • 2SiO2 (orthorhombic)<strong>Powder</strong> data cardsCardnumber6-025810-394Indexlines3.382. 203.413. 393.422.54SourceF. H. Cillery [1].H. Scholze [2] 1955.Additional published patterns. Norton [3]1925, Navias and Davey [4] 1925; Wyckoff,Grieg, and Bo wen [5] 1926; Mark and Rosbaud[6] 1926; Nahmias [7] 1933; Comeforo, Fischer,and Bradley [8] 1948; and Kurylenko [9] 1952.NBS sample. The sample of aluminum 3:2silicate was prepared at NBS by C. Bobbins.Gamma A1203 and SiO2-nR 2O were mechanicallymixed in stoichiometric proportions of 3A12 O3 to2SiO2-7iH2O. This mixture was pressed into pellets and fired at 1400 C and 1500 C with littlereaction, then remixed and fired in an open systemat 1700 C for 24 hr. Reaction was nearly complete. It was crushed, reground in an agatemortar and refired at 1725 C for 24 hr. Chemicalanalysis of the finished product showed 61.6 molepercent A12O3 and 38.4 mole percent SiO2 insteadof the beginning percentages of 60 and 40 in the3:2 mixture. Spectrographic analysis showed thefollowing major impurities: 0.01 to 0.1 percentiron, and 0.001 to 0.01 percent each of calcium,chromium, magnesium, manganese, nickel, titanium, and zirconium.*Some disagreement exists in the literature as to which ratio or ratios ofalumina to silica should be considered for mullite (3:2, 2:1, or both).This sample was prepared as 3:2 at the request of P. Schroth of the ArmcoSteel Corp. to be used as an identification, diffraction standard for mullitein refractory brick.The sample was colorless and optically positivewith the indices of refraction Na= 1.637, N$ =1.641, and N T =1.652.The ^-values of the othree strongest lines are:3.390, 3.428 and 2.206 A.Structural data. Sadanaga, Tokonami, andTakeuchi [10] in 1962 determined that mullitehas the space group Dlh-Pbam (No. 55). Wyckoff, Grieg, and Bowen [5] in 1926 determined thatmullite has 3/4(3Al2O 3-2SiO2 ) per unit cell. Several lattice constants have been converted fromkX to angstrom units for comparison with theNBS values.19261928193319521955196019621963Wyckoff, Grieg,and Bowen [5],Taylor [!!] . ...Nahmias [7]Kurylenko [9]___Scholze [2]_ ____Agrell and Smith[12].Sadanaga,Tokonami,and Takeuchi[10].National Bureauof <strong>Standard</strong>sat 25 C.*These values are for 2AliO8-SiOi.Lattice constantsaoA7. 527. 517. 547. 5807. 5377. 5582*7. 5837. 5456. 0004bA7. 687. 657. 677. 6897. 6717. 6878*7. 6817. 6898. 0005cA2. 862. 882. 902. 8952. 8782. 8843*2. 88542. 8842. 0002The density calculated from the NBS latticeconstants is 3.170 g/cm3 at 25 C.


Aluminum 3:2 Silicate (mullite) 3Al2O2-2SiO2 (orthorhombic)—Continuedhkl110200120210001220111130310021201121230320221040400140311330240321420041401141411331150510241421002250520Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 1 at 25 CdA5.393.7743.4283.3902.8862.6942. 5422. 4282.3932.3082. 2922. 2062. 1212. 1061.9691.9231. 8871. 8631.8411. 79541.71251. 70011. 69401. 59991. 57861. 56441.54611. 52421. 50671.48111. 47311. 46051. 44211.42401. 4046hklI48 112834196 44010015121122212405251113 350


Ammonium Fluoberyllate, (NH4) 2BeF4 (orthorhombic)<strong>Powder</strong> data cardsCardnumber3-0885Indexlines2.482.274.31SourceThe Dow Chemical Co.Additional published patterns. None.NBS sample. The sample of ammonium fluoberyllate was obtained from K and K Laboratories,Jamaica, Long Island, N.Y. Spectrographic analysis showed the following major impurities: 0.001to 0.01 percent each of aluminum, calcium, andsilicon.The sample was colorless, and optically negativewith Na =1.397, N0=1.401, and N7 = 1.403.The ^-values of the three strongest lines are:4.275, 2.478, and 4.312 A.Structural data. Hultgren [1] in 1934 determined that ammonium fluoberyllate belongs tothe space group D^-Pnam (No. 62) with4[(NH4 )2-BeF4] per unit cell. The lattice constants ofMukherjee [2] have been converted from kX toangstrom units for comparison with the NBSvalues.193419451963Hultgren [!]___ _Mukherjee [2]_ _ ...National Bureauof <strong>Standard</strong>s at25 C.Lattice constantsaA7. 57. 517. 645.001bA10. 210. 4110. 450.001cA5.85.905.929.001The density of ammonium fluoberyllate calculated from NBS lattice constants in 1.698 g/cm3at 25 C.Referenceshkl020Oil120111200201220031002131112040230310122231202320311132321, 222330241051013, 331400410250401322411,420251341033160133350402233252, 351510323004Internal <strong>Standard</strong>,Tungsten, a =3. 1648 ACu, 1.5405 A at 25 CdA5. 2295. 1574. 3124. 2753. 8213. 2123. 0853. 0032. 9622. 7942. 6712. 6122.5752. 4782. 4432.3622. 3422. 2892. 2842. 1642. 1362. 0562.0271. 9701. 9421. 9111. 8791. 83391. 81921. 81241. 79341. 75261. 75521. 71931. 69771. 67651. 61681. 60701. 56681. 55981. 51241. 49631. 4821/5159010036


Ammonium Flnoborate, NH4BF4 (orthorhombic)<strong>Powder</strong> data cards.Cardnumber1-0335Indexlines4. 503. 553. 18SourceHanawalt, Rinn, and Frevel[2] 1938.Additional published patterns. None.NBS sample. The sample of ammonium fluoboratewas obtained from K and K Laboratories,Jamaica, Long Island, N.Y. Spectrographicanalysis showed the following major impurities:0.1 to 1.0 percent each of calcium and phosphorusand 0.001 to 0.01 percent each of iron, titanium,and strontium.The sample was colorless and had extremelylow birefringence and indices of refraction.The ^-values of the three strongest lines are:4.482, 3.542, and 3.186 LStructural data. Hoard and Blair [1] in 1935determined that ammonium fluoborate has thespace group DJJ-Pbnm (No. 62) and 4(NH4BF4 )per unit cell. The cell constants of Hoard andBlair have been converted from kX to angstromunits for comparison with the NBS values.19351963Hoard and Blair[1).National Bureauof <strong>Standard</strong>sat 26 C.Lattice constantsaA7. 247. 272.001bA9. 089. 063. 001cA5. 655. 686. 001hklInternal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 26 Cd/hklInternal <strong>Standard</strong>, 0Tungsten, a = 3.1648 ACu, 1.5405 A at 26 Cd7110020101120200A5. 6684. 5284.4823. 8443. 63530581005151312410150023142A1. 8081.7821.7591. 7491. 72182< i


Ammonium Fluoborate, NH4BF4 (orthorhombic)—ContinuedReferencesThe density of ammonium fluoborate calculatedfrom the NBS lattice constants is 1.858 g/cm3 at26 C.Antimony Selenide,[1] J. L. Hoard and V. Blair, The crystal structures ofrubidium and ammonium fluoborates, J. Am.Chem. Soc. 57, 1985-88 (1935).[2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-<strong>ray</strong> diffraction, Ind. Eng. Chem.Anal. Ed. 10, 457-512 (1938).Sb2Se3(orthorhombic)<strong>Powder</strong> data cards. None.0.001 to 0.01 percent each of aluminum andAdditional published patterns. Donges [1] 1950. silicon.NBS sample. The sample of antimony selenide The sample was a dark g<strong>ray</strong> opaque powder.was obtained from Semitronics, Inc., Winchester, The (/-values of the three strongest lines are:Mass. It was heated in an evacuated tube at 2.868, 3.162, and 3.253 A.450 C overnight to obtain a sharper pattern. Structural data. Donges [1] in 1950 deterSpectrographic analysis showed the following mined that antimony selenide has the antimonymajor impurities: 0.01 to 0.1 percent tellurium and sulfide structure, the space group D^-Pbnm (No.62), and 4(Sb2Se3 ) per unit cell.Internal <strong>Standard</strong>, 0Lattice constantsTungsten, a =3. 1648 Ahkl Cu, 1.5405 A at 25 Cab cd/A A A1950 Donges [1] _ . 11. 58 11.68 3.98A1963 National Bureau1108.287of <strong>Standard</strong>s0205. 8924 at 25 C --. 11.633 11. 780 3.9852005. 8251205.25552204. 14101013. 7611Internal <strong>Standard</strong>,1303. 72032Tungsten, a ==3. 1648 A3103. 68215hkl Cu, 1.5405 A at 25 C0213. 297112313.25371d /2113. 162730402.945244002.910A2212. 8681001121. 93873012.77662160 1.9367786101. 9133302. 759102121. 8613112. 703222402. 629616201. 84134202. 608224411. 83743212.513315401. 826383511. 7970412. 367235311. 788153402. 345134302. 337130611. 761 471412. 319353121. 752 204112. 30312 3221. 69813556211. 6725102.2828 7101. 6463312.26872502. 184351421. 632


Antimony Selenide, Sb2Se3 (orthorhombic)—ContinuedThe density of antimony selenide calculatedfrom NBS lattice constants is 5.843 g/cm3 at 25 C.Reference[1] E. Donges, tlber Selenohalogenide des dreiwertigenAntimons und Wismuts und tiber Antimon (III)-selenid, Z. anorg. Chem. 263, 280-291 (1950).Antimony Telluride, Sb2Te3 (trigonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of antimony telluridewas obtained from Semitronics, Inc., Winchester, Mass. It was heated at 450 C overnight in an evacuated tube to sharpen the pattern.Spectrographic analysis showed the followingmajor impurities: 0.001 to 0.01 percent each ofaluminum and silicon.The sample was dark g<strong>ray</strong> opaque powder.The d-values of the three strongest lines are:3.157, 2.349, and 2.130 A.Structural data. Donges [1] in 1951 showedthat antimony telluride is isomorphous withbismuth telluride, having the space group D 35d-R3m (No. 166), and 3(Sb2Te3 ) per unit hexagonalcell, or l(Sb2Te3 ) per unit rhombohedral cell.The unit cell measurements reported by Semiletov[2] have been converted from kX to angstromunits for comparison with NBS values.195119561963Lattice constantsDonges [!]_____._._-__ ___Semiletov [2]______ __National Bureau of <strong>Standard</strong>s at 25 C.aA4. 254. 254. 262cA30.3529. 9230. 450The density of antimony telluride claculatedfrom NBS lattice constants is 6.513 g/cm3 at 25 C.References[1] E. Donges, Uber Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. III. t)ber Tellurohalogenidedes dreiwertigen Antimons und Wismutsund liber Antimon und Wismut (III) Tellurid undWismut (III) Selenid, Z. anorg. u. Allgem, Chem.265, 56-61 (1951).[2] S. A. Semiletov, Electronographic determination ofantimony telluride structure, Kristallografiya 1,403-406 (1956).8hkl(hex.)0030060091040151070181-0-100*1*111100-0-151-0-131160-1*141192050-0-182080-1-170-2-102-0-111-0-19, 1-1-150-0-210-1-201251-1-180-0-24,2-1-100-1-233000-2-191-1-212-0-20, 1-2-141*0-252-1-162-0-232202-1-191-0-281-2*200-2-250-1-293-0-181-3-102-2-15Internal <strong>Standard</strong>, 0Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 CdA10. 165.083.3833.3213. 1572. 8152. 6512. 3492. 2152. 1302.0301. 9771.9641. 8751. 8041.7661. 6921. 6611. 6111. 5781. 5371.4701.4501.4081. 35971. 32491. 26831. 24621. 23031. 21021. 19881. 17421. 15631. 12521. 07591. 06551. 05221. 04311. 02861. 01671, 00960. 9952.9704.9434'1351100


Arsenic Trioxide, claudetite, As2O3 (monoclinic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of claudetite wasobtained from the National Museum, No. 1737from the San Domingo mines, Portugal. Spectrographicanalysis showed the following major impurities: 0.1 to 1,0 percent each of aluminum,yttrium, and zinc; 0.01 to 0.1 percent each ofbarium, calcium, cobalt, chromium, iron, magnesium, titanium, and tungsten.The sample was colorless. Due to the highindices of refraction a complete optical analysiswas not obtained, but partial results seemed toconfirm the data given in Dana [4].The ^-values of the three strongest lines are:3.245, 3.454, and 2.771 . AStructural data. Buerger [1] in 1942 determinedthat claudetite has the space group C|h-P2i/n(No. 14) and 4(As2O3) per unit cell.The density of claudetite calculated from theNBS lattice constants is 4.186 g/cm 3 at 25 C.References[1] M. J. Buerger, The unit cell and space group of claudetite, As2O3, Am. Mineralogist 27, 216 (1942).[ 2] K. A. Becker, K. Plieth, and I. N. Stranski, Strukturuntersuchungder monoklinen ArsenikmodifikationClaudetit, Z. anorg. allgem. Chem. 266, 293-301(1951).[3] A. J. Frueh, The crystal structure of claudetite (monoclinicAs 2O3) Am. Mineralogist 36, 833-850 (1951).[4] Palache, Berman, and Frondel, Dana's System ofMineralogy, 7th Ed. 1, 546 (1951).hkl020110Oil120021T01Til130101040031140131, 041210211, 150002051012221, T51151112, 160042T42251, 170071T71080152, 261180T13123532, 091182213163572,0-11.1Internal <strong>Standard</strong>Silver, a=4.0861 ACu, 1.5405 1 at 25 CdA6. 4964. 9244.2774. 1183.7173. 5863.4543.3563. 3283. 2453. 1292.7712. 6402.6082,3332. 2642. 2532. 2312. 1042.0482.0051.8571.7881, 75141, 71631. 64771. 62281. 59881. 55221. 47161. 39151. 37491. 29371. 26671. 22201. 1423792649


Barium Bromide Monohydrate, BaBr2 -H2O (orthorhombic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of barium bromidemonohydrate was prepared from barium bromidedihydrate obtained from City Chemical Co., NewYork, N.Y. The hydrate was heated overnightat 85 to 90 C. Spectrographic analysis showedthe following major impurities: 0.01 to 0.1 percenteach of sodium and strontium; and 0.001 to 0.01percent each of calcium, magnesium, silicon, andtitanium.The color of the sample was white. The refractive index could not be determined because thesample was too fine.The t/-values of the three strongest lines are:3.170, 2.512, and 2.999 A.Structural data. Vainstein and Pinsker [1]in 1950 determined -.tihat barium bromide monohydratehas the barium chloride monohydratestructure, the space group D^-Pbnm (No. 62),and 4(BaBr2-H2O) per unit cell.19501963Vainstein andPinsker [!]_ _National Bureauof <strong>Standard</strong>sat 25 C.___..Lattice constantsaA9.419. 434. 001bA11. 5911. 650. 001cA4. 594. 6062. 0005The density of barium bromide monohydratecalculated from the NBS lattice constants is 4.135g/cm3 at 25 C.Reference[1] B. K. Vainstein and Z. G. Pinsker, Electron diffractionstudy of BaBr2 - H 2O, Zhur. Fiz. Khim. 24,432 (1950).hkl110020120210101111021121211230040131140301231041400002420022250, 122212510232042061441402270611080213, 512442461081303532043323, 362272343082571, 063Internal <strong>Standard</strong>,Tungsten, a -3.1648 ACu, 1.5405 A at 25 CdA7.365.834.964.384. 143.913. 6133.3773. 1702.9992. 9132. 8362. 7842. 5962. 5122.4622.3592.3032. 1892. 1422. 0912. 038L 8631. 8271.8071. 7881.7031.648L 5691.4761.4561.4481.4341. 4251. 38821. 37961. 36581. 35821. 34261. 29641. 24701. 23081. 2041I62355121382100481834146434262623


<strong>Powder</strong> data cardsBarium Stannate, BaSnO3 (cubic)The density of barium stannate calculated fromthe NBS lattice constant is 7.238 g/cm 3 at 25 C.Cardnumber3-0675Indexlines2.912.682.06SourceH. D. Megaw, Philips LampsLtd.hklInternal <strong>Standard</strong>,Tungsten, o==3.1648 ACu, 1.5405 A at 25 Cd7aAdditional published patterns. None.NBS sample. The sample of barium stannatewas prepared at NBS from stoichiometric amountsof barium carbonate and stannic oxide, pressedinto a pellet and heated at 1400 C for 1 hr.Spectrographic analysis showed the followingmajor impurities: 0.1 percent calcium and 0.01 to0.1 percent each of aluminum, magnesium, silicon,and strontium.The sample was very light g<strong>ray</strong>. The indicesof refraction could not be determined because thesample was too fine.The J-values of the three strongest lines are:2.911, 1.6805, and 2.058 A.Structural data. Megaw [1] in 1946 determinedthat barium stannate has the perovskite structure,the space group OJ-PmSm (No. 221), and 1(BaSnO3) per unit cell.1946195719581963Lattice constantsMegaw [!]---_ __-_--_-___-Roth [2]___ _______________ .__Wagner and Binder [3].. _ _____National Bureau of <strong>Standard</strong>sat 25 C___-________. ___-._-0A4. 11684. 1144. 11574. 1 163110111200211220310222321400411420332422510ReferencesA2.9112.3762.0581. 68051. 45551. 30171. 18821. 10021. 02910. 9702.9204.8776. 8402. 80731004313516135133765515Avera ge value of lastfive lines ______ .A4. 1174. 1174. 1174. 11644. 11674. 11634. 11604. 11664. 11644. 11614. 11624. 11634. 11634. 11644. 1163[1] H. D. Megaw, Crystal structure of double oxides of theperovskite type, Proc. Phys. Soc. London 58* 133(1946).[2] R. S. Roth, Classification of perovskite and otherABO 3-type compounds, J. Res. NBS 58, 75-88(1957).[3] G. Wagner and H. Binder, The binary systemsBaO-SnO2 and BaO-PbO2 . II. Crystal structuredeterminations, Z. anorg. allgem. Chem. 298, 12-21(1958).<strong>Powder</strong> data cardsCardnumber1-0812Indexlines3.082. 874. 20Bismuth Orthophosphate, BiPO4 (monoclinic)SourceHanawalt, Rinn, and Frevel [1]1938.Additional published patterns. Zemann [2]1950.NBS sample. The sample of monoclinic bismuth orthophosphate was obtained from BiosLaboratories, Inc., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of calcium andsodium and 0.01 to 0.1 percent each of silver,aluminum, copper, iron, magnesium, lead, andsilicon.The color of the sample was white. The indices of refraction could not be obtained becausethe sample was too fine.The a-values of the three strongest lines are:3.066, 2.862, and 4.156 A.Structural data. Zemann [2] in 1950 determined that monoclinic bismuth orthophosphatehas the monazite structure, the space group C25h-P2 1/n (No. 14), with 4(BiPO4) per unit cell. According to Mooney-Slater [3] 1962, three forms ofbismuth phosphate exist: a hexagonal low phaseformed from precipitation at room temperature,a high monoclinic phase formed about 700 C andthe monoclinic monazite phase formed above350 C,11


Bismuth Orthophosphate, BiPO4 (monoclinic)—ContinuedLattice constantsabcft19501963Zemann [2] __ ... _____________National Bureau of <strong>Standard</strong>s at 25 C__oA6. 756. 752A6. 966. 933A6.426.468104103 42. 5'hklroi110OilTil101111020200002120021210211012202211112512220022130031103511T31310131212301213Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 Cd0A5. 184. 7614. 6554. 1564. 0793. 5143.4663. 2823. 1423.0663. 0362. 9632. 9342. 8622. 5972.4842. 4382.4332. 3822. 3282. 1802. 1702. 1502. 1282. 1122. 0852. 0131. 9591. 9291. 916hkl782301223150103580322232023 02383225723113040100132195131914016400734022231334101833016 3124412112403214230422341118133, 223232427314542124 43198 303423501Internal <strong>Standard</strong>,Tungsten, a =3. 1648 ACu, 1.5405 A at 25 CdA1.8891.8821. 8721.8621. 8501. 7941. 7551. 7451. 7331. 7291. 6791. 6761. 6401. 6201. 6081. 5961. 5891. 5811. 5761. 5331. 5301. 5181.4671.4551.4421. 4181. 3791. 3631.3601.3551. 350I51562013142113142857683947615153264477325The density of monoclinic bismuth orthophosphatecalculated from NBS lattice constants is6.863 g/cm 3 at 25 C.References[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel,Chemical analysis by x-<strong>ray</strong> diffraction, Ind. Eng.Chem. Anal. Ed. 10, 457-512 (1938).[2] J. Zemann, Beitrage zue Kristallchemie des Wismuts,Tschermaks mineralog. petrog. Mitt. 1, 361-377(1950).[3] R. C. L. Mooney-Slater, Polymorphic forms of bismuthphosphate, Z. Krist. 117, 371-385 (1962).12


Bismuth Orthophosphate, BiPO4 (trigonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of trigonal bismuthorthophosphate was precipitated at NBS from amixture of bismuth nitrate and phosphoric acid,Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent sodium and 0.001to 0.01 percent silicon.The sample was colorless. The indices of refraction could not be determined because the samplewas too fine.The d-values of the three strongest lines are:4.421, 3.025, and 2.8541.Structural data. Mooney-Slater [1] in 1962 determined the structure of the trigonal bismuthorthophosphate; it has the space group D|-P3i21(No. 152) and 3 (BiPO4) per unit cell This formis transformed to a monoclinic monazite structureat 350 C and to another higher temperaturemonoclinic form above 700 C.19621963Lattice constantsMooney-Slater [!]____National Bureau of<strong>Standard</strong>s at 25 C_aA6. 9666. 98200. 0004c&6. 4606. 47640. 0007The density of trigonal bismuth orthophosphatecalculated from NBS lattice constants is 5.538g/cm 3 at 25 C.Reference[1] R.C.L. Mooney-Slater, Polymorphic forms of bismuthphosphate, Z. Krist. 117, 371-385 (1962).hkl100101110111200102112210202211103300301212113203220302310311213104222400312114402321214322105304403412501330331420502215413, 421510422511Internal <strong>Standard</strong>,Tungsten, o=3.1648 ACu, 1.5405 A at 25 CdA6. 064. 4213.4943.0733. 0252.8542. 3752.2862. 2112. 1562. 0322. 0161. 9251. 8671.8371. 75711. 74521. 71151. 67741. 62391. 56931. 56441. 53681. 51181. 48921. 46871. 36981. 35631. 32061. 27501. 26671. 26241. 23841. 22171. 18851. 16391. 14501. 14251. 13281. 12671. 12551. 08601. 07741. 0709/6510043449482321256164225162416201211611551210314151057255834575432728-345 O—64———313


Bismuth Orthovanadate (low form), BiVO4 (tetragonal)<strong>Powder</strong> data cards. None. (Card No. 12-293gives data for a mineral pucherite, BiVO4 , whichis orthorhombic and does not compare witheither of the synthetic forms of BiVO4.)Additional published patterns. None.NBS sample. The sample of low form bismuthorthovanadate was obtained from City ChemicalCorp., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.001to 0.01 percent each of aluminum and silicon.The sample was also precipitated at NBS fromsolutions of Na3VO4 and Bi(NO 3)3 . If the precipitate is heated below 400 C, the tetragonalform is unchanged. Between 400 and 500 C thechanged to the stable monoclinic form occurs.The color of the sample was orange-yellow. Theindices of refraction could not be determinedbecause the sample was too fine.The d-values of the three strongest lines are:3.649, 2.738, and 1.8791.Structural data. The structure of low formbismuth orthovanadate has not been reported inthe literature. However, because of the similarityof patterns it is thought to be isostructural withzircon, having the space group DiJ-l4i/amd (No.141) and 4(BiVO4) per unit cell.Lattice constants1963 National Bureauof <strong>Standard</strong>s at26 C... ........aA7. 2999cA6. 4573The density of low form bismuth orthovanadatecalculated from NBS lattice constants is 6.252g/cm3 at 26 C.hkl101200211112220202301103321312400213411420004332204501224521512600404215611532620424Internal <strong>Standard</strong>,Tungsten, a 3.1648 ACu, 1.5405 1 at 26 CdA4.8393.6492.9122.7382. 5822.4192.2782.0651.9321.8791. 8251. 7971.7081.6321.6141. 51831. 47651. 42401. 36871. 32611. 30871. 21691. 20921. 20081. 17991. 16731. 15431. 1478747100226121318111448157511710106113126952679Bismuth Orthovanadate (high form), BiVO 4 (monoclinic)<strong>Powder</strong> data cards. None. (Card No. 12-293gives data for a mineral pucherite, BiVO4 , whichis orthorhombic and does not correspond to eitherform of BiVO4 which we prepared.)Additional published patterns. None.NBS sample. The sample of high form bismuth orthovanadate was prepared by R. S. Rothat NBS by heating stoichiometric mixtures of bismuth oxide and vanadium oxide at 895 C for 16hr. Spectrographic analysis showed the followingmajor impurities: 0.001 to 0.01 percent each ofaluminum and silicon. The monoclinic form wasalso prepared from the low form which was madeby precipitation from solutions of Na3VO4 andBi(NO3) 3 . The low form sample is tetragonal upto approximately 400 C. The nonreversiblechange to the monoclinic form takes place between 400 and 500 C.The color of the sample was orange-yellow.The indices of refraction could not be determinedbecause the sample was too fine.The d-values of the three strongest lines are:3.095, 3.082, and 3.120 A.Structural data. Roth and Waring [1] in 1963reported that high form BiVO4 is thought to beisostructural with fergusonite because of the similarity of patterns. Ferguson [2] in 1955 reportedthat the fergusonite structure is monoclinic. Theprobable space group is C26h I2/a (No. 15) with4(BiVO4) per unit cell.14


Bismuth Orthovanadate (high form), BiVO4 (monoclinic)—ContinuedLattice constantsabcfti oft^i National Bureau of <strong>Standard</strong>s at 26 C. ......A5. 195A11. 701A5no9on 3fthkl020110Oil130031, 121121040200002220141141,211211112T12150051231231132T32060240042202202222161161310013251251152T52170071330, 321321123033Internal <strong>Standard</strong>Silver, a= 4.0861 ACu, 1.5405 A at 26 C.d0A5. 8474.7494. 6703. 1203.0953.0822. 9242. 5982. 5462.3742.2822. 2772.2642.2502. 2392. 1332. 1271.9951. 9881. 9761.9701.9491.9431.9201.8241. 8121. 7261.7191.7171. 7131. 6801. 6481. 6441.6391. 6331. 5911. 5871. 5821. 57571. 55801. 556272232732100962612141661197711535741516682181733232245The density of high form bismuth orthovanadatecalculated from NBS lattice constants is6.951 g/cm 3 at 26 C.10984Referenceshkl123062, 242242080512143, 213213053181,271T72551262400280004082091361561163163552, 253253370431073, 323440523044402204282Internal <strong>Standard</strong>Silver, a =4. 0861 ACu, 1.5405 A at 26 C.dA1. 55221. 54821. 54051. 46251. 41671. 41461. 4067L 37441. 35661. 34811. 34081.33181. 29891. 27471. 27251. 26831. 25981. 25661. 25361.24471. 24171. 21751. 21171. 20281. 19581. 19061. 18711. 18311. 16701. 16001. 14611. 1411/7115322


<strong>Powder</strong> data cardsCardnumber8-2110-54Indexlines3. 222. 372. 192. 033.203.25Bismuth Telluride (tellurobismuthite), BtTe3 (trigonal)Thompson [1].SourceVasenin and Konovalov [2].Additional published patterns. Harcourt [3]1942.NBS sample. The sample of bismuth telluridewas obtained as a single crystal from SemitronicsInc., Winchester, Mass. Spectrographic analysisshowed the following impurities: 0.0001 to 0.001percent each of magnesium and silicon.«The sample was a g<strong>ray</strong> opaque powder.The d-values of the three strongest lines are:3.222, 2.376, and 2.192 LStructural data. Lange [4] in 1939 determinedthat bismuth telluride has the tetradymite structure with the space group DSd-R3m (No. 166) and3(Bi2Te3) per unit hexagonal celL19401940195119541963Lattice constantsFrondel [5]_ _-_-_-_-Peacock and Berry [6]__Donges [7]_ _ __Semiletov [8]__ .-.National Bureau of<strong>Standard</strong>s at 25 C__aA4. 394. 3844. 354.394. 3852cA^n 730. 4530. 330.4630. 48316hkl (hex.)0030061011040150181-0-100-1-111101130-0-151161-0-130-1-142051-0-160-0-180-2-102-0-111*1-150-2-130-0-210-1-201250-2-161-1-182-1-103000-1-232-1-131-1-212-0-201-0-252-1-160-1-26Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 CdA10. 165. 0783. 7673. 3983. 2222, 6892. 3762. 2382. 1922. 1422.0312. 1131. 9951. 8901. 812L 7021. 6931. 6111. 5651, 49011. 47561. 45131. 41401. 39701. 34491. 34041. 2986L 26601. 25141. 22421. 21031. 18861. 16101. 14641. 1201I373


Bismuth Telluride (tellurobismuthite), Bi2Te3 (trigonal)—ContinuedReferences [5][1] R. M. Thompson, The telluride minerals and their [6]occurrence in Canada, Am. Mineralogist 34, 342-382 (1949).[2] F. I. Vasenin and P. F. Konovalov, lonization x-<strong>ray</strong> [7] Estructure investigation of bismuth telluride, J. Tech.Phys. 26, part 7, 1376 (1956).[3] G. A. Harcourt, Tables for the identification of oreminerals by x-<strong>ray</strong> powder diffraction, Am. Mineralogist 27, 100 (1942). [8][4] P. W. Lange, Ein vergleich zwischen Bi2Te3 undBi2Te2S, Naturwissenschaften 27, 133 (1939).C. Frondel, Redefinition of tellurobismuthite andvandiestite, Am. J. Sci. 238, 880-888 (1940).M. A. Peacock and L. G. Berry, Rontgenographicobservations on ore minerals, Univ. TorontoStudies Geol. Ser. 44-48, 67 (1940-1943).Donges, Ober Chalkogenohalogenide dreiwertigenAntimons und Wismuts III. tlber Tellurohalogenidedes dreiwertigen Antimons und Wismuts undiiber Antimon und Wismut III-Tellurid und WismutIII-Selenid, Z. anorg. allgem. Chem. 265, 56 (1951).S. A. Semiletov, An electron diffraction study of filmsof Bi-Se and Bi-Te prepared by evaporation, TrudyInst. Krist. Akad. Nauk SSSR 10, 76-83 (1954).Bismuth Trioxide (bismite), alpha Bi2O 3 (pseudo-orthorhombic)<strong>Powder</strong> data cards.Cardnumbers6-02946-0307Indexlines3.261. 961. 753,232. 681.67Sille*n [1] 1941.SourceFrondel [2] 1943.NBS sample. The sample of bismuth trioxidewas obtained from Johnson, Matthey, and Co.,Ltd. Their spectrographic analysis showed thefollowing major impurities: less than 0.001 percent each of silicon aluminum, lead, silver, andsodium.The color of the sample was light yellow. Therefractive indices were top high to be determinedby the usual liquid-grain immersion method.The d-values of the three strongest lines are:3.253, 2.693, and 2.708 LStructural data. Sillfo [1] in 1941 determinedthat alpha bismuth oxide is monoclinic or pseudoorthorhombichaving the monoclinic space groupCV-P2!/c (No. 14), with 4(Bi2O3) per unit monocliniccell, or 8(Bi2O3) per unit pseudo-orthorhombiccell. According to Sill6n [1], themonoclinic indices hkl are transformed into thepseudo-orthorhombic indices h'k'l' by the following relationsThe lattice constants reported by Sill6n havebeen converted from kX to angstrom units forcomparison with the NBS values.hkl120111200031220040131211140102231022240122320051311151222331142340251400260302242, 420013322411113071351171062033431162360133Internal <strong>Standard</strong>, oTungsten, a = 3. 1648 ACu, 1.5405 A at 25 CdA5. 2764. 4984. 0843. 6223. 5173. 4563. 3103. 2533. 1842. 7532. 7082. 6932. 6382. 5592.5322. 4992.4292. 3902. 2442. 1762. 1542. 1382. 1322. 0412. 00641. 99221. 95841. 93171. 91361. 90981. 87871. 87201. 84091. 82371. 80871. 79671. 77901. 76601. 75901. 7549/2448219331002563839615976146652825426


Bismuth Trioxide (bismite), alpha Bi2O3 (pseudo-orthorhombic)—Continuedhkl213342180402262233422053280451313153,5114423335310910041041242820734715511-10. 0433044Internal <strong>Standard</strong>,Tungsten, a =3. 1648 ACu, 1.5405 A at 25 CdA1. 74521. 72651. 69141. 67431. 65511. 64311. 62731. 59351. 59201. 58151. 57541. 56321. 50651. 49941. 48881. 48541. 46251. 43911. 40931. 39831. 38821. 37921. 36721. 36371. 34851. 3462Lattice constantsa7A1941 Sille*n [1]..........8. 161963 National Bureauof <strong>Standard</strong>s at1625 °C-.—_- — . 8. 166121131010281073665565136134333bA13. 8113. 827cA5. 845. 850The density of alpha bismuth trioxide calculated from NBS lattice constants is 9.371 g/cm 3at 25 °C.References[1] L. G. Sill^n, On the crystal structure of monoclinico-Bi2 O 3, Z. Krist. 103, 274-290 (1941).[2] C. Frondel, Mineralogy of the oxides and carbonatesof bismuth, Am. Mineralogist 28, Nos. 9 and 10.521-535 (1943).18


Cadmium Perchlorate Hexahydrate, Cd(ClO4) 2 -6H2O (trigonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of cadmium perchloratehexahydrate was obtained from the CityChemical Corp., New York, N.Y. Spectrographicanalysis showed the following major impurities:0.0001 to 0.001 percent each of lead and silicon.The sample was colorless and optically negativewith indices of refraction N 0—1.490 and N e=1.479.The d-values of the three strongest lines are:3.995, 4.223, and 2.902A.Structural data. West [1] in 1935 reported thatcadmium perchlorate hexahydrate is trigonal, thespace group CJv-P3ml (No. 156) with l[Cd(ClO4 )2-6H2O] per unit cell. West reported that thestructure is very similar to the hexagonal magnesium perchlorate structure. Moss, Russell, andSharp [2] confirmed West's determinations. Thevalue of "a" reported by West has been dividedby 2 as he suggested. The unit cell values reportedby West have been converted from kX to angstromunits for comparison with the NBS values.19351963Lattice constantsWest [!]...__. ._._....National Bureau of<strong>Standard</strong>s at 25 °C__aA7. 927. 9939cA5. 305. 3304The density of cadmium perchlorate hexahydrate calculated from the NBS lattice constantsis 2.361 g/cm3 at 25 °C.References[1] C. D. West, The crystal structures of hydrated compounds. II. Structure type Mg(ClO4)2-6H 20, Z.Krist. A91, 480-493 (1935).[2] K. C. Moss, D. R. Russell, and D. W. A. Sharp, Thelattice constants of some metal fluoroborate hexahydrates,Acta Cryst. 14, 330 (1961).hkl100001101110200111201002210102211300112301202220310212311003302103401113320203312321410213411402303322501004, 330420313421114204403502511214323422600413512224Intern a I <strong>Standard</strong>,Tungsten, a==3.1648 ACu, 1.5405 1 at 25 CdA6.9215.3264. 2233. 9953. 4633. 1972. 9022. 6672. 6172. 4892.3502. 3092.2172. 1172. 1119.9985. 9201. 8670. 8064. 77711. 74461. 72051. 64631. 62311. 58801. 58081. 55771. 52231. 51071. 47001. 45391. 45191. 40781. 36421. 34021. 33251. 30821. 30421. 27051. 26411. 24381. 24001. 22871. 21071. 18721. 18411. 17431. 15371. 15101. 12701. 1088/25177510045166211825972627198379367434956651111234425443325233333319


<strong>Powder</strong> data cardsCardnumber3-0453Indexlines3. 302. 972. 35Cadmium Sulfate, CdSO4 (orthorhombic)SourceDow Chemical company.Additional published patterns. None.NBS sample. The sample of cadmium sulfatewas prepared at NBS from cadmium carbonatetreated with an excess of sulfuric acid and heatedto dry ness. Spectrographic analysis showed themajor impurities to be 0.001 to 0.01 percent eachof aluminum and silicon.20hkl001110101020111021200002121012201211031220131122202040212032041310013231301222141311113321240232302, 203142051, 150331133151Internal <strong>Standard</strong>,Tungsten, a ==3. 1648 ACu, 1.5405 i at 25 CdA4. 7013. 8263. 3293. 2772. 9612. 6882. 3582. 3522. 3362.2122. 10442. 00681. 98271. 91551. 82731. 77041. 66481. 63911. 61351, 60041. 54851. 52901. 52501. 51791. 49081. 48431. 47041. 45371. 44971. 35711. 34591. 32431. 30591. 29341. 26341. 23171. 22931. 220419611963/174110079686353237242618222117193121811387764971711694817115The sample was white. The indices of refraction could not be determined because the samplewas too fine.The d-values of the three strongest lines are:3.329, 3.277, and 2.961 A.Structural data. Kokkoros and Rentzeperis [1]in 1961 determined cadmium sulfate is orthorhombic with the most probable space group DJh-Pmmn (No. 59) with 2(CdSO4 ) per unit cell.Lattice constantsKokkoros andRentzeperis[1].National Bureauof <strong>Standard</strong>sat 25 °C.aA4 7094. 71746A6. 5626. 5590cA4. 6944. 7012The density of cadium sulfate calculated fromNBS lattice constants is 4.759 g/cm3 at 25 °C.kkl322223400014052114251420, 303024341313060421124204412161252342134224260333351, 153261440044432Internal <strong>Standard</strong>, 0Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 CdA1, 21401. 21271. 17941. 15701, 14541. 12351. 11361. 11001. 10621. 10321. 09431. 09331. 07981. 07771. 05191. 04071. 03871. 03051. 02211. 01131. 00160. 9918. 9897. 9839. 9702. 9576. 9552. 949845Reference[1] P. A. Kokkoros and P. J. Rentzeperis, X-<strong>ray</strong> investigation of the anhydrous cadmium and mercuricsulphates, Acta Cryst. 14, 329-330 (1961).I64335333546522476323335433


Cadmium Telluride, CdTe (cubic)<strong>Powder</strong> data cardsCardNumber10-207IndexLines3. 742. 291. 95Vaughan [1].SourceAdditional published patterns. None.NBS sample. The sample of cadmium telluridewas obtained from Semi-Elements Inc., Saxonburg,Pa. Spectrographic analysis showed thefollowing impurities: 0.01 to 0.1 percent siliconand 0.0001 to 0.001 percent each of barium, iron,and lead.The sample was a black opaque powder.The d-values of the 0three strongest lines are:3.741, 2.290, and 1.954 A.Structural data. Zachariasen [2] in 1926 determined that cadmium telluride has the zinc sulfidestructure, the space group Td-F43m (No. 216),and 4(CdTe) per unit cell. The lattice constantsof Zachariasen and Goldschmidt have been converted from kX to angstrom units for comparisonwith the NBS value.192619261963Lattice constantZachariasen [2]_ _ _ _Goldschmidt [3]_ ....... ___ _National Bureau of <strong>Standard</strong>sat 25 °CL_ _....._._.__....£6. 4776. 4536. 481The density of cadium telluride calculated fromthe NBS lattice constant is 5.856 g/cm3 at 25 °C.hkl111220311400331422511440531620533444711642731dA3. 7422. 2901. 9541. 6191. 4881. 3231. 2471. 1461.0951. 0250. 9884.9356. 9076. 8661. 8438Internal <strong>Standard</strong>,Tungsten, a = 3.1648 ACu, 1.5405 A at 25 °CAverage value of last five lines _References/1006228591042442


<strong>Powder</strong> data cards22Cardnumber3-073612-261hkl100101110200111201002102210211112300202301212310221311302113400203222312320213321410402004104322313501330420331214421502510304323Calcium Fluoride Phosphate (fluorapatite), Ca*F(PO4)s (hexagonal)Indexlines2. 812.711.842. 822.722.26McConnell [4] 1937.Carobbi and Mazzi [13] 1959.Internal <strong>Standard</strong>,Tungsten, a ==3. 1648 ACu, 1.5405 A at 25 °CdA v8. 125, 254. 6844.0553. 8723.4943.4423. 1673.0672. 8002. 7722. 7022. 6242.5172. 2892. 2502. 2182. 1402. 1282.0612. 0281.9971.9371. 8841. 8621. 8371. 7971. 7711. 7481. 7221. 6841. 6371.6071. 5801.5621.5341.5241.5011. 4971.4681.4571. 4521.446Additional published patterns. Nd<strong>ray</strong>-Szab6[2] 1930, Bale [6] 1940.SourceNBS sample* The sample of calcium fluoridephosphate was prepared at NBS by J. H. deGroot.A mixture of calcium fluoride and tricalciumorthophosphate was heated in a covered platinumdish to 1250 °C. Spectrographic analysis showedthe following major impurities: 0.1 to 1.0 percenteach of magnesium and sodium; and 0.01 to 0.1percent each of aluminum, barium, germanium,iron, silicon, and strontium.Internal <strong>Standard</strong>,Tungsten, a =3. 1648 Ahkl Cu, 1.5405 A at 25 Cd/IA511 1.42653321. 4224844131. 40152


Calcium Fluoride Phosphate (fluorapatite), Ca5F(PO4) 3 (hexagonal)—ContinuedThe sample was colorless and optically negativewith the indices of refraction N0= 1.633 and N e= 1.628.The d-values of the three strongest lines are:2.800, 2.702, and 2.772 A.Structural data. Hentschel [1] in 1923 determined that fluorapatite has the space groupC§h-P6/m (No. 176) and 2[Ca5F(PO4 ) 3] per unitcell.The density of synthetic fluorapatite calculatedfrom the NBS lattice constants is 3.201 g/cm 3 at25 °C.Lattice constantsac1923193019311939194019411946195019521952195219591963Hentschel [1]— ______-___-___-„__-----_-Nd<strong>ray</strong>-Szab6 [2]. ._.._..._______.._..____..Mehmel[3]_. _______„.___.____._.___._____Thewlis, Clock, and Mur<strong>ray</strong> [5] ,...._ __._..Bale [6]_ -----_-_------__----------------Klement and Dihn [?]___„. ________________Beevers and Maclntyre [8]_ _ ___ -Wallaeys and Chaudron [9] _ _ _ _ _Brasseur [10]__ _ _______ ___ ______ _ _McConnell [ll]________.__________-___-___-Altschuler, Cisney and Barlow [12] _ _____Carobbi and Mazzi [13]National Bureau of <strong>Standard</strong>s synthetic sample described above.Sample from Durango, Mex, a _ _ _Sample from Llallagua, Bolivia. b -_ __ .. _A/9. 33\9. 439.399. 389.389. 399. 389. 399. 3509. 3649. 3959. 3869. 424*9. 36849. 39239. 3712A6. 836. 896. 896. 866. 886. 896. 896. 896. 8706. 8796. 8826.8786. 888*6. 8841 at 25 °C6. 8821 at 25 °C6. 8824 at 26 °C*The error in these values was ±0.0003.••b These samples were obtained from the National Museum; the number of the Mexican sample is 104021, of the Bolivian sample 103869. These cell constants were derived from powder diffraction measurements made at the same time as those on the synthetic sample.» This particular sample from Durango may not be typical because of its lanthanum content. Spectropraphic analysis showed 1 to 4 percent of lanthanumand 0.1 to 1.0 percent each of cerium and sodium as major impurities. The error on these lattice constants was ±0.0005.b Spectrographic analysis showed major impurities to be 0,1 to 1.0 percent of manganese and 0.01 to 0.1 percent each of iron and strontium.References[1] H. Hentschel, Rontgenographische Untersuchungenam Apatit, Centr. Mineral. Geol. p. 609 (1923).[2] St. Na<strong>ray</strong>-Szab6, The structure of apatite (CaF)Ca4(PO 4) a , Z- Krist. 75, 387-398 (1930).[3] M. Mehmel, Beziehungen zwischen kristallstrukturund chemischer form el des apatits, Z. physik Chem.B15, 223-41 (1931).[4] D. McConnell, The substitution of SiO 4- and SO4-groups for PO4- groups in the apatite structure;ellestadite, the end-member, Am. Mineralogist 22,981 (1937).[5] J. Thewlis, G. E. Glock, and M. M. Mur<strong>ray</strong>, Chemicaland x-Ray analysis of dental, mineral, and syntheticapatites, Trans. Faraday Soc. 35, 358-63 (1939).[6] W. F. Bale, A comparative roentgen-<strong>ray</strong> diffractionstudy of several natural apatites and the apatitelikeconstituent of bone and tooth substance, Am.J. Roentgenol. 43, 735-47 (1940).[7] R. Klement and P. Dihn, Isomorphe Apatitarten,Naturwissenschaften 29, 301 (1941).[8] C. A. Beevers and D. B. Maclntyre, The atomicstructure of fluorapatite and its relation to that oftooth and bone material, Mineralog. Mag. 27, 254(1946).[9] R. Wallaeys and G. Chaudron, Sur la preparation decertaines apatites inixtes, Compt. rend. 231, 355-357 (1950).[10] H. Brasseur, Note sur les constitutes reticulaires etles indices de refraction des ftuor-, chlor-, et hydroxylapatites,Proceedings of the InternationalSymposium on the reactivity of solids, Gothei.burgPart 1, 363-7 (1952).[11] D. McConnell, The Problem of the carbonate apatitesIV, Structural substitutions involving CO 3 and OH,Bull. Soc. Franc. Mineral, et Crist. 75, 428 (1952).[12] Z. S. Altschuler, E. A. Cisney, and I. II. Barlow,X-Ray evidence of the nature of carbonate-apatite,Bull. Geol. Soc. Amer. 63, 1230-31 (1952).[13] G. Carobbi and F. Mazzi, Sulla possibilitu di unasostituzione parziale del calcio con 1'uranio nelreticolo dell' apatite, Atti. accad. naz. Lincei, Mem.Classe Sci. Fis. Mat. Nut. Ser. II* [8] 5, 159-71(1959).23


Cerium Niobium Titanium Oxide (eschynite), CeNbTiO6 (orthorhombic)<strong>Powder</strong> data cards. None.Additional published patterns. Komkov [1]1959.NBS sample. The sample of cerium niobiumtitanium oxide was prepared at NBS by R. S.Roth from stoichiometric mixtures of ceriumoxide, niobium oxide, and titanium oxide. Thesample was heated first at 1300 °C for 3 hrs. andthen reheated at 1325 °C for three more hours.Spectrographic analysis showed the followingmajor impurities: 0.001 to 0.01 percent each ofaluminum, calcium, iron, magnesium, and silicon.The sample was a dark brown opaque powder.The d-values of the three strongest lines are:2.975, 3.024, and 3.106 A,Structural data. Komkov [1] in 1959 determined that cerium niobium titanium oxide has thespace group DJ£-Pmnb (No. 62) with 4(CeNbTiO 6 )per unit cell. The lattice constants reported byKomkov have been converted from kX to angstrom units for comparison with NBS values.19591963Lattice constantsKomkov [1] ____ „National Bureau of<strong>Standard</strong>s at 26°C.aA7. 567. 538bA10. 9910. 958cA5. 435. 396The density of cerium niobium titanium oxidecalculated from NBS lattice constants is 5.617g/cm3 at 26 °C.Reference[1] A. I. Komkov, Minerals of the series euxenite-polycraseand priorite-blomstrandite, Dokl. Akad. Nauk SSSR126, 641-644 (1959).hkl020Oil120101111021200121220031211131002140112041122320301240032132222051151331042400142340060312420160, 013341, 103322242123260033213431351223440252402412342043, 071162360143, 171Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 26 CdA5. 484. 8414. 4314. 3904.0753. 8473. 7733. 4273. 1063.0242. 9752. 8082. 6982. 5742. 4742. 4432. 3062. 2832. 2782. 2152. 1702. 0852.0372.0311. 9611.9331. 9221. 8851. 8621. 8521. 8271. 8131. 7831. 7751. 7501. 7441. 7121. 6671. 6431. 6141. 6061. 6001. 5791, 5561. 5531. 5511. 5451. 5281. 5261. 5031. 4831,4771. 4747245241013454368010022281077989978251926115229922474619658132217710101034744424


Cesium Chromate, Cs>CrO 4 (orthorhombic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of cesium chromatewas obtained from the Fairmount Chemical Co.Inc., Newark, N.J, Spectrographic analysisshowed the following major impurities: 0.1 to 1.0percent rubidium; 0.01 to 0.1 percent each ofpotassium and sodium; and 0.001 to 0.01 percenteach of aluminum, barium, calcium, and silicon.The color of the sample was yellow and it isoptically positive. The refractive indices areN«=1.750, N0=1.753, and N y=1.762.The d-values of the three strongest lines are:3.342, 3.207, and 3.364 A.Structural data. Miller [1] in 1938 determinedthat cesium chromate has the potassium sulfatestructure, the space group Dgh-Pnam (No. 62)with 4(Cs2CrO4 ) per unit cell.The lattice constants reported by Miller havebeen converted from kX to angstrom units forcomparison with NBS values.19381963Miller [!]______,National Bureauof <strong>Standard</strong>s25°C. __..____Lattice constantsaA8.3808. 429± 0. 001b£11. 15711. 190±0. 001cA6. 2396. 302± 0. 001The density of cesium chromate calculated fromthe NBS lattice constants is 4.266 g/cm3 at 25 °C.Reference[1] J. J. Miller, The structure of Cs2 CrO 4) Z. Krist. 99A,32-37 (1938).hkl120111200210121201130220211031002131221230310140122231311212141321, 240132222330241150051, 400232312113401340250420411123341242060213430033332152431402161ago143441Internal <strong>Standard</strong>, 0Tungsten, a 3.1 648 ACu, 1.5405 A at 25 CdA4. 664. 6024. 2133. 9463. 7493. 5053. 4113. 3643. 3423. 2073. 1502. 9982.9692. 7942. 7252. 6542. 6112. 5542. 5012.4632. 4492. 3312. 3142.3012. 2442. 1862. 1632. 1092. 0902. 0622. 0041. 9991. 9821. 9771. 9711. 9671. 91521. 89111. 87431. 86531. 85421. 83491. 83081. 82801. 78331. 76151. 75211. 74991. 70601. 64741. 6263/8982069182177100876681724341115661717133129138151015151097101488267613619816411647625


Cesium Fluoride, CsF (cubic)<strong>Powder</strong> data cardsCardnumber1-0872Indexlines3. 002. 123. 48Davey [1] 1923.SourceAdditional published patterns. None.NBS sample. The sample of cesium fluoridewas obtained from Semi-Elements Inc., Saxonburg,Pa. X-<strong>ray</strong> patterns were prepared fromsamples maintained in dry air because of thedeliquescense. Spectrpgraphic analysis showedthe following impurities: 0.1 to 1.0 percentpotassium; and 0.001 to 0.01 percent each ofaluminum, calcium, copper, iron, lithium, magnesium, nickel, silicon, and sodium. The amountof rubidium impurity was not determined. Thesample was colorless.The d-values of the three strongest lines are:3.003, 3.469, and 2.125 A.Structural data. Posnjak and Wyckoff [2] in1922 determined that cesium fluoride has thesodium chloride structure, the space group O£Fm3m (No. 225), and 4(CsF) per unit cell. Theunit cell measurements reported by Davey,Posnjak, and Wyckoff, have been converted fromkX to angstrom units for comparison with theNBS value.Lattice constantshkl111200220311222400331420422511440531600620533622711642731dA3.4693.0032. 1251. 81311. 73661. 50361. 37981. 34461. 22781. 15761. 06301.01661. 00240. 9512.9173.9067.8420.8036. 7830Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 °CAverage value of last five> lines _ . _I81100372510761054233412212a0A6.0086.0076.0116.0136.0166.0146.0146.0136.0156.0156.0136.0146.0146.0166.0156.0146.0136.0146.0146.014192219231963Posnjak and Wyckoff [2] _ ___ _Davey [1]_ ______ _._National Bureau of <strong>Standard</strong>s at25 °C.A6. 046. 0206. 014The density of cesium fluoride calculated fromthe NBS lattice constant is 4.638 g/cm 3 at 25 °C.References[1] W. P. Davev, Precision measurements of crystals ofthe alkali halides, Phys. Rev. 21, 143-61 (1923).[2] E. Posnjak and R. W. G. Wyckoff, The crystal structures of the alkali halides II, J. Wash. Acad. Sci.13, 248-51 (1922).26


Cobalt Fluosilkate Hexahydrate, CoSiF6 *6H2O (trigonal)<strong>Powder</strong> Data cards. None.Additional published patterns. None.NBS sample. The sample of cobalt fluosilicatehexahydrate was obtained from the City ChemicalCo., New York, N.Y. Spectro^raphic analysisshowed the following major impurities: 0.01 to 0.1percent each of aluminum, copper, magnesium,nickel, and sodium; and 0.001 to 0.01 percent eachof calcium, iron, and manganese.The color of the sample was pink. The indicesof refraction were too Tow to be measured by theusual liquid grain immersion method.The (/-values of the three strongest lines are:4.69, 4.18, and 2.595 A.Structural data. Hassel and Richter-Salvesen[1] in 1927 determined that cobalt fluosilicatebexahydrate has the nickel chlorostannate structure, the space group C35v-R3m (No. 160), andl[CoSiF6-6H2O] per unit rhombohedral cell, or3[CoSiF6 6H2O] per unit hexagonal cell. The unitcell measurements of Hassel and Richter-Salvesenhave been converted from kX to angstrom unitsfor comparison with the NBS values.19271962Lattice constantsHassel and Richter-Salvesen [!].._ -,-__.National Bureau of<strong>Standard</strong>s at 25 °C._aA9.359.370cA9.699.732hkl(hex.)110102202211113122104311024303312401214223042321410232134330413502324422152306600226520244342018416440532, 072Internal <strong>Standard</strong>,Tungsten, a = 3.1648 ACo, 1.7889 A at 25 °CdA4.694. 183. 1162.9272. 6682.5952,3312. 1932.0862.0782.0421.9861.9071.9001.8721. 8291.7711.7381.6521.5621.5551.5401.4791.4621.3971. 39161. 35241. 33351. 29931. 29691. 28681. 20281. 19631. 17121. 1279}I1006351152923


Cobalt Perchlorate Hexahydrate, Co(ClO4) 2 -6H2O (hexagonal)<strong>Powder</strong> data cards. None.Additional published patterns. West [1] 1935.NBS sample. The sample of cobalt perchlorate hexahydrate was obtained from the CityChemical Corp., New York, N.Y. Spectrographicanalysis showed the following major impurities:0.01 to 0.1 percent of nickel, and 0.001 to 0.01percent each of copper, magnesium, and silicon.The color of the sample was pink. It is optically negative with the indices of refractionN 6= 1.492 and N 0 =1.512.The ^-values of the three strongest lines are:3.900, 4.139, and 2.840 A.Structural data. West [1] in 1935 determinedthat cobalt perchlorate hexahydrate has themagnesium perchlorate hexahydrate structure,the space group DJh-P6/mmm (No. 191), and4[Co(ClO4 ) 2 -6H 2O] per unit cell. The lattice constants of West have been converted from kX toangstrom units for comparison with the NBSvalues.19351963Lattice constantsWest [!]____„_. _______National Bureau of<strong>Standard</strong>s at 26 °C.aA15. 5515. 610±.002cA5. 215. 2372± . 0007hkl200101111201220211311401002420202421600402601440620422441621203640641820802821443660224Internal <strong>Standard</strong>,Silver, a =4.0861 ACo, 1.7889 A at 26 °CdA6.7634.8814.3454. 1393.9003.6613.0522.8402. 6182. 5562.4402.2962.253| 2. 0691.9521.874} 1. 8281. 76551. 69071. 55021. 48691. 4753| 1. 4201| 1. 30111. 2413/343621002


Copper Sulfate (chalcocyanite), CuSO4 (orthorhombic)<strong>Powder</strong> data cardsThe density of copper sulfate calculated fromthe NBS lattice constants is 3.903 g/cm3 at 26 °C.Cardnumber12-779Indexlines2. 624.203. 55SourceHanawalt, Rinn, and Frevel[1] 1938.Additional published pattern. Pistorius [2]1960.NBS sample. The sample of copper sulfatewas obtained from the NBS laboratories inBoulder, Colo. The sample was ground andfumed off with sulfuric acid and placed immediately in a dry atmosphere. Special care wasnecessary to keep it anhydrous. The samplewas mounted in a holder which maintained a dryatmosphere while the patterns were run, Spectrographicanalysis showed the following majorimpurities: 0.01 to 0.1 percent silicon, and 0.001to 0.01 percent each of aluminum, iron, magnesium, and nickel.The sample was colorless. The indices ofrefraction could not be obtained because thesample was too fine.The d-values of the three strongest lines are:3.549, (2.616 and 2.611), and 4.187 A.Structural data. Kokkoros and Rentzeperis[3] in 1958 determined that copper sulfate has thespace group D^-Pmnb (No. 62) and 4(CuSO 4 )per unit cell. Rama Rao [4] in 1961 maderefinements on the structure.195819601963ReferencesKokkoros &Rentzeperis[3].Pistorius [2]_____National Bureauof <strong>Standard</strong>sat 26 °C.Lattice constantsa^6. 696. 8116. 6982± 0. 0006bA8. 398, 3918. 3956± . 0006c0A4. 834. 7914. 8291±. 0004[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel,Chemical analysis by x-<strong>ray</strong> diffraction, Ind. Eng.Chem. Anal. Ed. 10, 457-512 (1938).[2] C. W. F. T. Pistorius, Lattice constants and probablespace group of anhydrous cupric sulfate (artificialchalcocyanite), Am. Mineralogist 45, 744-746 (1960).[3] P. A. Kokkoros and P. J. Rentzeperis, The crystalstructure of the anh}7drous sulfates of copper andzinc, Acta Cryst. 11, 361 (1958).[4] B. Rama Rao, A note on the crystal structure ofanhydrous copper sulfate, Acta Cryst. 14, 321(1961).hklOil101111200021121220211031002012221022301140320,311231222400042013103420151341251213060402422303342313520, 511062004014162442413214224620,611433371181,631244622462424282Internal <strong>Standard</strong>,Silver, a = 4.0861 ACu, 1.5405 A at 26 Cd4. 1873. 9213. 5493. 3463. 1722. 8622. 6162. 6112. 4212. 4162. 3212. 3012. 0932. 0272. 0031. 9711. 9631. 77491. 67491. 58431. 58061. 56501. 55531. 54361. 45781. 43301. 42981. 39961. 37601. 30731. 30561. 29191. 29021. 27631. 21071. 20751. 19481. 19181. 15081. 14961. 12581. 09641. 07901. 07211. 03231. 01380. 9990. 9850. 9812.9536. 9249/776100342} 95| 50101273491528121110283


Dysprosium Arsenate, DyAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of dysprosiumarsenate was prepared at NBS from a water solution of dysprosium trichloride and arsenicpentoxide. The sample was dried at 110 °C.Spectrographic analysis showed the followingmajor impurities: 0.01 to 0.1 percent antimonyana 0.001 to 0.01 percent each of calcium,magnesium, lead, and silicon.The sample is colorless. The indices ofrefraction could not be determined because thesample was too fine.The d-values of the three strongest lines are:3.537, 2.669, and 1.8246 A.Structural data. Durif and Forrat [1] in 1957determined that dysprosium arsenate has thezircon structure with tne space group Dih~/4i/amd(No. 141) and 4[DyAs(>4] per unit cell.19571963Lattice constantsDurif and Forrat [!]-_-National Bureau of<strong>Standard</strong>s at 25 °C.a0A7. 097. 0733±0. 0003c0A6. 3156. 3133±0. 0003The density of dysprosium arsenate calculatedfrom the NBS lattice constants is 6.338 g/cm3 at25 °C.Reference[1] A. Durif and F. Forrat, Sur quelques ars^niates desterres rares a structure zircon, Compt. Rend.1636-38 (1957).hkl101200211112220301103321312400213411420303332204501224512440600404532424631116415444552316604624Internal <strong>Standard</strong>,Silver, a=4.0861 ACo, 1.78891 at 25 Cd4.7133.5372.8282. 6692.5002.2092.017L 8731. 82461. 76811. 75221. 65561. 58121. 57021. 47401. 44131. 38021. 33451. 27011. 25041. 17901. 17731. 13231. 11721. 04001. 02971.01710. 9803. 9535. 9521. 9444. 9126i151003672288547143


Erbium Arsenate, ErAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of erbium arsenatewas prepared at NBS from a water solution ofarsenic pentoxide and erbium trichloride. Spectrographicanalysis showed the following majorimpurities: 0.01 to 0.1 percent each of nickel andantimony and 0.001 to 0.01 percent each ofaluminum, calcium, magnesium, lead, and silicon.The sample was very pale pink. The indicesof refraction could not oe determined becausethe sample was too fine.The &-values of the three strongest lines are:3.510, 2.652, and 1.812 i.Structural data. Durif and Forrat [1] in 1957determined that erbium arsenate has the zirconstructure with the space group DIS-I(No. 141) and 4(ErAsO4 ) per unit cell.19571963Lattice constantsDurif and Forrat [!]__-__National Bureau of<strong>Standard</strong>s at 25 °C.aA7.047. 0203±. 0002cA6.306. 2761± . 0004The density of erbium arsenate calculated fromthe NBS lattice constants is 6.574 g/cm3 at 25 °C.Reference[1] A. Durif and F. Forrat, Sur quelques ars6niates desterres rares & structure zircon, Compt. Rend.1636-38 (1957).hkl101200211112220202301103321312400213411420332204501224512440600, 404532620, 424116613640, 444712, 316604624732800820516660752Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 CdA4. 6793.5102, 8052. 6522. 4812. 3392. 1932.0051. 8591. 8121. 7551. 7411. 6431. 56981. 46381. 4328L 37021. 32641. 26101. 24111. 17011. 12401. 10981. 02341. 01090. 9734.9465.9380. 9062. 8845. 8777. 8516. 8329. 8274. 7898I12100468202857521442151491810377123


Europium Arsenate, EuAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of europium arsenatewas prepared at NBS from a water solution ofarsenic pentoxide and europium trichloride. Itwas dried at 110 °C. Spectrographic analysisshowed the following major impurities: 0.01 to0.1 percent each of antimony and silicon; 0.001to 0.01 percent each of aluminum, calcium, iron,magnesium, and titanium.The sample was colorless. The indices ofrefraction could not be determined because thesample was too fine.The d-values of the three strongest lines are:3.578, 2.704, and 1.8467 AStructural data. No reference to the structureof europium arsenate was found but it is apparently isostructural with yttrium arsenatewith the space group Dl£-I4i/amd (No. 141)and 4(EuAsO 4) per unit cell.Lattice Constants1963 National Bureau of<strong>Standard</strong>s at 25 °C.aA7. 1541± . 0004cA6. 3953±. 0004The density of europium arsenate calculatedfrom the NBS lattice constants is 5.902 g/cm3at 25 °C.hkl101200112220202301103321312400420332204224512440600, 404532424116444316604624Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACo, 1.7889 A at 25 Cd0A4 773. 5782. 7042. 5302. 3862. 2362. 04301. 89531. 84671. 78861. 59971. 49141. 45951. 35111. 28471. 26461. 19211. 14551. 13081. 04280. 9919. 9643. 9557. 9233/210063175535451211128883781055113632


Gallium Arsenide, GaAs (cubic)<strong>Powder</strong> data cards. None.Additional published patterns. Is one.NBS sample. The sample of gallium arsenidewas obtained from Semitronics Inc., Winchester,Mass. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent iron,0.01 to 0.1 percent chromium, nickel, and lead;and 0.001 to 0.01 percent each of cobalt, copper,indium, manganese, molybdenum, and silicon.The sample was a dark g<strong>ray</strong> opaque powder.The ^-values of the three strongest lines are:3.262, 1.998, and 1.704 A.Structural data. Goldschmidt [1] in 1927 determined that gallium arsenide has the zinc sulfidestructure, the space group Td-F43m (No. 216),and 4(GaAs) per unit cell.Lattice constanthkl111220311400331422511440531620533444711dA3. 2621.9981.7041.4131. 2971. 1541.0880. 9993.9557.8938.8621. 8159.7916Internal <strong>Standard</strong>,Tungsten, a = 3.1648 ACu, 1.5405 A at 25 °C/1006129711175366426aA5. 6485.6505. 6505.6485. 6525.6475.6485.6525.6535.6525.6525.6525.6521963 National Bureau of <strong>Standard</strong>s at25 °CL______--_____ ________A5. 652Average value of last five lines____--5.652ReferenceThe density of gallium arsenide calculated fromthe NBS lattice constant is 5.321 g/cm3 at 25 °C.[1] V. M. Goldschmidt, Geochemische VerteilungsgesetzeVIII, Skrifter Norske Vidensk, Akad. Oslo, Math.Nat. Kl. 8, 390 (1926-27).33


Holmium Arsenate, HoAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of holmium arsenatewas prepared at NBS from a water solution ofarsenic pentoxide ajid holmium trichloride. Spectrograpnicanalysis showed the following majorimpurities: 0.01 to 0.1 percent antimony and0.001 to 0.01 percent each of aluminum, calcium,iron, lead, and silicon.The color of the sample was very pale pinkishwhite. The indices of refraction could not bedetermined because the sample was too fine.The d-values of the three strongest lines are:3.528, 2.668, and 1.822 LStructural data. The structure of holmiumarsenate was not found in the literature; however,it is apparently isostructural with erbium arsenatehaving the space group DJg-l4i/amd (No. 141)and 4 (HoAsO4 ) per unit cell.Lattice constants1963 National Bureau of <strong>Standard</strong>s at 25 °C.aA7. 0548±.0003cA6. 3159±.0005The density of holmium arsenate calculatedfrom NBS lattice constants is 6.420 g/cm3 at 25 °C.hkl101200211112220202301103321312400420332204501224413512440404, 600532424116206640552604624732800820516644660Internal <strong>Standard</strong>,Tungsten, a=3.1648 ACu 1.5405 A at 25 °CdA4.7093.5282.8192. 6682.4942.3522.2032.0171.8681.8221.7631. 57741. 47101. 44111. 37691. 33391. 32791. 26701. 24701. 17631, 12991. 11591. 03011. 00860. 9781. 9516.9428. 9110.8890.8818.8556.8378.8317. 8314751004672067545016141591949356103147234


Indium Arsenide, InAs (cubic)<strong>Powder</strong> data cardsCardnumber8^387Indexlines1. 241. 022. 10SourceLiu and Peretti [1] 1953.Additional published patterns. A. landelli [2]1941.NBS sample* The sample of indium arsenidewas obtained from Semitronics, Inc., WinchesterMass. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each ofsilver, aluminum, bismuth, chromium, iron, gallium, and titanium; and 0.001 to 0.01 percent eachof barium, calcium, cobalt, magnesium, nickel,antimony, and tin.The sample was an opaque metallic powder.The d-values of the three strongest lines are:3.498, 2.142, and 1.8263 A.Structural data. landelli [2] in 1941 determined that indium arsenide has the zinc sulfidestructure, the sj)ace group Td-F43m (No. 216), and4(InAs) per unit cell. The unit cell measurementreported by landelli has been converted from kXto angstrom units for comparison with the NBSvalue.Lattice constantshkl111200220311222400331420422511440531600620533444711642731Internal <strong>Standard</strong>, Tungsten, a= 3. 1648 ACu, 1.5405 A at 25 °CdA3.4983. 0302. 1421. 82631. 74891. 51451. 38951. 35441. 23661. 16581. 07071. 02411. 00970. 9578. 9239. 8745. 8483. 8096. 78877a100861382913215971016336158A6. 0596.0606. 0596. 0576. 0586. 0586.0576. 0576. 0586. 0586. 0576. 0586. 0586. 0586. 0586. 0596. 0586. 0586. 058Average value of last five lines- ______ __6. 058194119531963landelli [2]. ___________________Liu and Peretti [1] __ _ __ _National Bureau of <strong>Standard</strong>s at25 °CL — — -_--_- — — — — ----A6. 0486. 0586. 058The density of indium arsenide calculated fromNBS lattice constant is 5.668 g/cm3 at 25 °C.References[1] T. S. Liu and E. A. Peretti, The indium-arsenic system,Trans. Am. Soc. Metals 45, 677-85 (1953).[2] A. landelli, Sulla struttura dei composti, InP, InAs, eInSb, Gazz. chim. ital, 71, 58-62 (1941).35


<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of lanthanumarsenate was prepared at NBS from a water solution of arsenic pentoxide and lanthanum trichloride. It was dried at 110 °C. Spectrographicanalysis showed the following major impurities:0.01 to 0.1 percent each of aluminum, iron, andsilicon, and 0.001 to 0.01 percent each of calcium, magnesium, lead, and antimony.Lanthanum Arsenate, LaAsO4 (monoclinic)Lattice constantsThe sample was colorless. The indices of refraction could not be determined because thesample was too fine.The rf-values of the three strongest lines are:3.185, 2.983, and 3.391 A.Structural data. No reference to the structureof lanthanum arsenate was found; however, it isapparently isostructural with lanthanum phosphate with the space group Cih-P2i/n (No. 14)and 4(LaAsO4 ) per unit cell.a6cft1963 National Bureau of <strong>Standard</strong>sat 25 °C.0A7. 0078± . 00070A7. 212±. 0010A6. 7670±. 0007104°29. 3'±. 6'The density of lanthanum arsenate calculated from the NBS lattice constants is 5.572 g/cm3 at 25 °C.hklT01110OilTil101111020200002120210012202212112220122301031103311221122,310013, 131212301231103, 132320023Internal <strong>Standard</strong>,Silver, a = 4. 0861 ACu, 1.5405 A at 25 °CdA5. 454.954. 854.354. 2153. 6353. 6063. 3913.2783. 1853.0682. 9832.7222. 5462. 5272.4712.4302.3262.2572.2522. 2132. 1852. 1592. 0892. 0231.9911.9591. 9421. 9161.868hklI4 32212 231, 22310 0408132


Lanthanum Niobium Titanium Oxide, LaNbTiO G (monoclinic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of lanthanum niobium titanium oxide was prepared at NBS byR. S. Roth from stoichiometric mixtures of theoxides of lanthanum, niobium, and titanium.The sample was first heated at 1300 °C for 3 hrand then heated at 1350 °C for 3 hr. Spectrographicanalysis of the original oxides showed noimpurities greater than 0.05 percent.The sample was colorless. The refractiveindices could not be determined because thesample was too fine.The d-values of the three strongest lines are:3.444, 3.331, and 3.306 i.Structural data. P. M. de Wolff [1] in 1962determined that lanthanum niobium titaniumoxide has a C-centered monoclinic lattice.Lattice constantsabc/319621963de Wolff [!].._________„_____,__NatioDal Bureau of <strong>Standard</strong>s at25 °C.A11. 2011. 196oA8. 858. 851A5. 275. 265115°18'115°16'hkl110200Til111220511021221310130202T31400312421531311330511022112422041241132Internal <strong>Standard</strong>, 0Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 °CdA6. 685.0634.5233.4443.3313. 3063. 2413. 1833. 1532. 8332. 6322. 5732. 5312.4212.3552,2732.2492.2232, 1702.0962.0652.0332.0061. 9931.941hkl75322023315312411504419422236621161511011530113042,22351162071153314 T5245311069121610 Reference8822101010010031302068Internal <strong>Standard</strong>, 0Tungsten, a = 3. 1648 ACu 1.5405 A at 25 °Cd1. 9161. 8681. 8251. 7831. 7611. 7441. 7311. 7211. 7151. 6781.6691.6511. 6201.6031. 5791. 5631. 5071. 4591.427[1] P. M. de Wolff, private communication./41010311610910869610114594437


Lithium Phosphate, low form (iithiophosphate), Li3PO4 (orthorhombic)<strong>Powder</strong> data cards The dengity of lithium phosphate, low form,calculated from the NBS lattice constants is 2.480g/cm3 at 25 °C.Cardnumber12-230Indexlines3.983. 802.67Fisher [1] 1958.SourceA high form is obtained from samples that havebeen heated above approximately 500 °C.Additional published pattern. Matias and Bondareva[2] 1957.NBS sample. The sample of lithium phosphatewas obtained from the City Chemical Co., NewYork, N.Y. Spectrographic analysis showed thefollowing major impurities: 0.1 to 1.0 percent calcium; 0.01 to 0.1 percent each of aluminum, sodium, and strontium; and 0.001 to 0.01 percenteach of barium, iron, magnesium, and silicon.The sample was colorless. The indices of refraction could not be determined because thesample was too fine.The d-values of the three strongest lines are:3.973, 3.797, and 2.640 A.Structural data. Zemann [3] in 1960 studied acrystal of Li3PO4 that had been grown in moltenLiCl and determined that it has the space groupD^-Pmnb (No. 62) and 4(Li3PO4 ) per unit cell.We find that the lower form apparently has thesame structure with only slight changes in thelattice constants, principally in the c-direction.The cell constants of Zambonini and Laves havebeen converted from kX to angstrom units forcomparison with the NBS values.19321963Zambonini andLaves [4],National Bureauof <strong>Standard</strong>sat 25 °C.Lattice constantsaA6.086. 1155± . 00046A10. 2810. 467±.001cA4. 874. 8452± . 0005References[1] D. J. Fisher, Note on Iithiophosphate. Am. Mineralogist43, 761-2 (1958).[2] V. V. Matias and A. M. Bondareva, Lithiophosphate,a new mineral, Doklady Akad. Nauk S.S.S.R.112, 124-6 (1957); an English abstract exists inAm. Mineralogist 42, 585 (1957).[3] J. Zemann, Die Kristallstrukturvon Lithiumphosphat,Li3PO 4 , Acta Cryst. 13, 863-7 (1960).[4] F. Zambonini and F. Laves, Uber die Kristallstrukturdes Li3PO4 und seine Beziehung Zum Strukturtypdes Olivin, Z. Krist. 83, 26-28 (1932).3Shkl020120101021121200220040002221041022141122320, 202301241222321142160061340161103023, 312400260123420421223143440080402262053, 361303422243280520501281442460343380Internal <strong>Standard</strong>Silver, a = 4.0861 ACu, 1.5405 A at 25 Cd0A5.2323. 9733. 7973. 5543. 0713. 0592.6402. 6162.4232.3182. 3032. 1992. 1552. 0701. 8991. 8791. 8391. 7851. 7691. 70741. 67771. 64151. 60831. 58551. 56161. 54311. 52871. 51521. 49591. 46751. 40431. 37761. 34091. 32031. 30781. 29311. 28481. 27881. 26561. 25501. 25331. 20271. 1909L 18601. 16761. 15911. 14981. 13941. 1014/341009856| 266436471 1


Lithium Phosphate, high form, Li3PO4 (orthorhombic)<strong>Powder</strong> data cards. None. <strong>Powder</strong> data cardNo. 12-230 has a pattern by Fisher [1] which seemsto be for the low form. The sample is changedto the high form when it has been heated aboveapproximately 500 °C.Additional published patterns. Tien and Hummel [2J, 1961.NBS sample* The sample of lithium phosphatewas obtained from the City Chemical Co, NewYork, N.Y. It was heated at 800 °C for 15 min.Spectrographic analysis showed the followingmajor impurities' 0.1 to 1.0 percent calcium; 0.01to 0.1 percent each of aluminum, sodium, andstrontium; and 0.001 to 0.01 percent each ofbarium, iron, magnesium, and silicon.The sample was colorless and optically positive,with the indices of refraction N«= 1.550, N0 =1.556, and N 7=1.560.The d-values of the three strongest lines are:3.978, 3.834 and 2.640 A.hklInternal <strong>Standard</strong>,Tungsten, a = 3.1648 ACu 1.5405 A at 25 ChklInternal <strong>Standard</strong>,Tungsten, a==3.1648 ACu 1.5405 A at 25 Cd/d7020Oil120101021, 111121200220040131311002140221041141122231051212311241151222042321060160331061251340103023341, 400260420133213, 332, 071421A5.244. 463. 9783.8343.5883. 0933.0582.6402. 6192. 5832.5212.4622.4062.3272. 3132. 1632.0952. 0841. 9271.8851.8531. 8441. 8381.8001.7931. 7721. 7451. 6791. 6571.6461. 63051. 60801. 58481. 56591. 52851. 51581. 46731. 44291. 43221. 40672971009363181767372714473342653


Lithium Phosphate, high form, Li3PO4 (orthorhombic)—ContinuedStructural data, Zemann [3] in 1960 studied acrystal of Li3PO4 that had been grown in moltenLiCl and determined that it has the space groupD^-Pmnb (No. 62) and 4(La3PO4) per unit cell.The cell constants of Zambonini and Laves havebeen converted from kX to angstrom units forcomparison with the NBS values.The density of lithium phosphate, high form,calculated from the NBS lattice constants is 2.439g/cm3 at 25 °C.Lattice constants193219601963Zambonini andLaves [4].Zemann [3] .National Bureauof <strong>Standard</strong>sat 25° C.aA6. 086. 126. 1147± . 0005boA10. 2810. 5310. 475±. 001cA4. 874.934. 9228±. 0005References[1] D. J. Fisher, Note on lithiophosphate, Am. Mineralogist 43, 761-2 (1958).[2] T. Y. Tien and F. A. Hummel, Studies in lithium oxidesystems: X, lithium phosphate compounds, J. Am.Ceram. Soc. 44, 206-8 (1961).[3] J. Zemann, Die Kristallstruktur von Lithiumphosphat,Li 3PO4 , Acta Cryst. 13, 863-7 (1960).[4] F. Zambonini and F. Laves, tlber die Kristallstrukturdes Li 3PO 4 und seine Beziehung Zum Strukturtypdes Olivin, Z. Krist. 83, 26-28 (1932).40


Magnesium Ammonium Phosphate Hexahydrate (struvite), MgNH4PO4*6H2O(orthorhombic)<strong>Powder</strong> data cardsCardnumberIndexlinesSourcehklInternal <strong>Standard</strong>,Tungsten, a -=3.1648 ACu, 1.5405 A at 25 C5-03164. 282.932. 69Hanawalt, Rinn and Frevel [1]1938.Additional published patterns. None.NBS sample. The sample of struvite was precipitated at NBS from a solution of magnesiumsulfate by adding a solution of ammonium monohydrogenorthophosphate. Spectrographic analysis showed the following major impurities: 0.01to 0.1 percent sodium, and 0.001 to 0.01 percenteach of calcium, iron, and silicon.The sample was colorless and optically positive.The indices of refraction are Na —1,493, N^=1.496, and N? = 1.501.The d-values of the three strongest lines are:4.257, 5.601, and 2.919 A.Structural data. Bland and Basinski [2] in1959 determined that struvite has the space groupC27vrPm2!n (No. 31) and 2(MgNH4PCV6H2O) perunit cell.194419591963Palache, Bermanand Frondel [3]_Bland and Basinski[2]. ________National Bureauof <strong>Standard</strong>s at25°C_________Lattice constantsaA6. 106. 136.945±. 001b£11.2011. 1911. 208±. 002cA6. 976. 926. 1355± . 0008The density calculated from the NBS latticeconstants is 1.706 g/cm3 at 25 °C.References[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-<strong>ray</strong> diffraction, Ind. Eng. Chem.,Anal. Ed. 10, 457-512 (1938).[2] J. A. Bland and S. J. Basinski, Crystal symmetry ofstruvite (guanite), Nature 183, 1385-7 (1959).[3] C. Palache, H. Berman, and C. Frondel, D ana'sSystem of Mineralogy, 7th Ed. 2, 715 (1944).001110020Oil101111021121200130031002201012211040112022221041122141231202212240301150222, 311042241003151142103, 232113023331123312052251033203133, 400341223332dA6. 145. 9055. 6015. 3784. 6004. 2574. 1393. 5573. 4753. 2893. 1923. 0673. 0222. 9582. 9192. 8022. 7222. 6902. 6602. 5482. 5112. 3942. 3522. 3002. 2532. 1802. 1672. 1332. 1272. 0692. 054\2. 046J2. 0141. 9831. 9601. 9321. 9211. 8731. 8511. 8221. 8101. 8011. 7941. 7621. 737L 7141. 681L 657/74158276100404112723142354341550433751214435761110514235338141091454441


Potassium Chlorate, KC1O3 (monoclinic)<strong>Powder</strong> Data cardsCardnumber1-059912-571Indexlines3.452. 792.863.462.882.80SourceHanawalt, Rinn and Frevel[1] 1938.Institute of Physics, University College, Cardiff.Additional published patterns. None.NBS sample. The sample of potassium chloratewas obtained from the General Chemical Co.,New York, N.Y., and recrystallized to sharpenthe pattern. Spectrographic analysis showed thefollowing impurities: 0.001 to 0.01 percent eachof aluminum, barium, iron, rubidium, silicon,sodium, and strontium.The color of the sample was white. It isoptically negative with the indices of refractionNa =1.408, N0=L516, and N 7 = 1.524; 2V wasvery small.The d-values of the three strongest lines are:3.45, 3.34, and 2.868 A.Structural data. Zachariasen [2] and [3] in 1928determined that potassium chlorate has the spacegroup CS h P2i/m (No. 11) and 2[KC1031 perunit cell. The unit cell measurements of levingand Ozols and Zachariasen have been convertedfrom kX to angstrom units for comparison withthe NBS values.The density of potassium chlorate calculatedfrom the NBS lattice constants is 2.339 g/cm 3at 26 °C.References[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel,Chemical analysis by X-<strong>ray</strong> diffraction, Ind, Eng.Chem. Anal. Ed. 10, 457-513 (1938).[2] W. H. Zachariasen, The crystal structure of sesquioxidesand compounds of the type ABOs, SkrifterNorske Videnskaps-Akad. Oslo I: Mat.-Naturv. Kl.Nr. 4, 82 (1928).[3] W. H. Zachariasen, The crystal structure of potassiumchlorate, Z. Krist. 71, 501 (1929).[4] A. levinS and J. Ozols, Precision determination oflattice constants of monoclinic crystals, DokladyAkad. Nauk SSSR »1, 527-30 (1953).hkl001T01Oil110002T02101012020111021120501102511, T13022112T22013203201213211221, 123122T04103023130113032T32131014223221214302T24123511303033513310040203005, 533215213323042Internal <strong>Standard</strong>,Tungsten, a==3.1648 ACu, 1.5405 A at 26 °CdA6. 694.414.293.453.343.2343.2042. 8682. 7942.7792.5792. 3562.3272. 3092. 1492. 1452. 1352. 1152. 0701.9191.9021.8151. 8001. 78881. 78001. 77301. 76151. 74211. 71491. 68001.62791. 61451. 61111. 60141. 58201. 57221. 55391. 54281. 49731. 48971. 48481. 47001. 42961. 42131. 41371. 39781. 35171. 33711. 32541. 31361. 30091. 289973105100603435332343182677172552121


Potossium Chlorate, KCIO3 (monoclinic)—ContinuedLattice constants192919531963Zachariasen [3]__-_ _______levies and Ozols [4]_ _ _National Bureau of <strong>Standard</strong>s at26 °Ca0A4. 6564. 65694. 6553±.00026A5. 5965. 590895. 5905±.0006cA7.0997. 09917. 1006±.0005ft109°38 /109°38.9'109°41.1'±.3'Potassium Lithium Sulfate, KLiSO4 (hexagonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of potassium lithiumsulfate was prepared at NBS by dissolving stoichiometricamounts of solid potassium hydroxide andlithium hydroxide in a small amount of water.When the mixture was at room temperature adrop of 1 percent bromcresol-purple was addedand the mixture neutralized with H2SO4 . Thesolution was evaporated to dryness and the precipitate was then heated to about 750 °C tosharpen the pattern. Spectrographic analysisshowed the following impurities: 0.01 to 0.1 percent each of calcium, indium, and sodium; and0.001 to 0.01 percent each of aluminum, rubidium,and silicon.The sample is colorless and optically negative.The indices of refraction are N0 = 1.471 and N e= 1.469.The d-values of the three strongest lines are:3.960, 3.099, and 2.573 A.Structural data. Nowacki [1] in 1942 determined that potassium lithium sulfate has thespace group CJ-P6/3 (No. 173) and 2(KLiSO4)per unit cell. The lattice constants of Nowackihave been converted from kX to angstrom unitsfor comparison with the NBS values.19421963Lattice constantsNowacki [1]. _______ _National Bureau of<strong>Standard</strong>s at 26°C__aA5. 145. 1457cAa 628. 6298hkl002101102110111103200112201, 004202113203210114,211105212204300213106205214220116222311,304206215107, 312313401, 224216402108403306Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 26 Cd0A4. 3203. 9603.0992. 5732.4652. 4182. 2252.2112. 1581. 9811. 9191. 7621. 6831.6531. 60961. 56901. 54991. 48521. 45331. 36871. 36471, 32761. 28641. 25501. 23291. 22371. 20811. 20551. 18801. 13561. 10481. 09391. 07871. 04841. 03891. 03357121007034165820191242311511411223355262331212111The density of potassium lithium sulfate calculated from NBS lattice constants is 2.385g/cm3 at at 26 °C.Reference[1] W. Nowacki, Beziehungen zwischen K[AlSiO 4 ] (Tiet-Kaliophilit), Ba[Al2O4 ], K[LiSO 4 ], Na[AlSiO 4 ] (Nephelin)und SisO* (0-Tridymit), Naturwissenschaften30, 471-472 (1942).43


Potassium Perchromate, K3CrO8 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. Wilson [1] 1941.NBS sample. The sample of ipotassium perchromate was obtained from City Chemical Corp.,New York, N.Y. Spectrographic analysis did notshow any impurities greater tnan the range 0.0001to 0.001 percent.The color of the sample was deep red. Theindices of refraction are N 0= 1.774 and N e — 1.730.It is optically negative.The d-values of the three strongest lines are:2.979, 2.372, and 1.856 LStructural data. Wilson [1] in 1941 determinedthat potassium perchromate has the space groupDiJ-l42m (No. 121) and 2(K3CrO 8 ) per unit cell.Potassium perchromate is used as a structure type.The unit cell measurements reported by Wilsonhave been converted from kX to angstrom unitsfor comparison with NBS values.19411963Lattice constantsWilson [1].__. ......National Bureau of<strong>Standard</strong>s at 25 °C.aA6. 716. 711cA7. 627. 641The density of potassium perchromate calculated from NBS lattice constants is 2.869 g/cm3at 25 °C.Reference[1] I. A. Wilson, X-<strong>ray</strong> analysis of potassium perchromate, K2Cr0 8 and isomorphous compounds, Arkiv.Kemi Minerali. Geol. B15, 1-7 (1941).hkl101110002200112211202220301310222004312321303, 400204330402420224332314413501404512116, 521440325600532316Internal <strong>Standard</strong>,Tungsten, a==3.1648 ACu, 1:5405 A at 25 Cd5.0544. 7493. 8223.3572. 9792. 7952. 5242.3722. 1472, 1212.0161. 9111.8561.8081. 6771. 6591. 58151. 53651. 50041. 48801. 46151. 41981. 37181. 32191. 26071. 24451. 22991. 18631. 18081. 11831. 10201. 0920/42181361001755352794775753101210


Potassium Zinc Decavanadate 16 Hydrate, K2Zn2Vi 0O28 -16H2O (triclinic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of potassium zincdecavanadate 16 hydrate, was obtained from H. T.Evans, Jr., U.S. Geological Survey, Washington,D.C. It was prepared from a solution of potassium metavanadate and zinc acetate in water withthe pR adjusted between 3 and 4 with acetic acid.Spectrographic analysis showed the followingmajor impurities: 0.1 to 1.0 percent sodium; 0.01to 0.1 percent silicon, and 0.001 to 0.01 percenteach of aluminum, barium, calcium, chromium,iron, magnesium, molybdenum, lead, and rubidium.The color of the sample was bright orange. Theindices of refraction could not be determinedbecause of imperfections in the crystals.The d-values of the three strongest lines are:8.18, 7.40, and 9.45 A.Structural data, Evans, Mrose, and Marvin [1],in 1955 determined that potassium zinc decavanadate 16 hydrate, has the space group Ci-Pi (No.2) and l(K2Zn2Vio(Vl6H2O) per unit cell.The density of potassium zinc decavanadatecalculated from the NBS lattice constants is2.708 g/cm3 at 25 °C.Reference[1] H. T. Evans, Jr., M. E. Mrose, and R. Marvin, Constitution of the natural and artificial decavanadates,Am. Mineralogist 40, 314 (1955).hkl010100110001TTlT01OilOil101211020200201111221220102002121211201,222151202251521102022230030112501252, 300212022031552, 330052, 123003203242,5115T3222, T13420153,452103, 331503032131513552204254213,232,132554142, 153530043, 0334T1133Internal <strong>Standard</strong>,Tungsten a ==3. 1648 ACu, 1.5405 A at 25 °CdA10.019. 458.618. 187. 407. 176.815. 955.525. 175.004. 724. 634.604.534.334. 1664. 0943. 9603. 7593.6973.6303. 5803. 5483.4873.4483.4023.3733.3333.2793.2293. 1493.0112. 9772.9512.8832.7782. 7302.6802.5952. 5692.5572. 5252.4852.4582.3892.2782. 1642. 1392. 1022.0852.0712.0652.0462. 0061.9871.9851.9641.930/232820100353756914944


Potassium Zinc Decavanadete 16 Hydrate, K2Zn2V,,O2s '16H2O (triclinic)—ContinuedLattice constantsabca0y19551963Evans, Mrose and Marvin[1].National Bureau of <strong>Standard</strong>s at 25 °C.A10, 7610. 778±.003A11. 1711. 146±.003A8. 778.774±. 003104° 50'104°57'±1'109° 29'109°32'±1'65°05'65°0'±2'Rubidium Chromate, Rb2CrO4<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of rubidium chromatewas obtained from the Fairmount ChemicalCo., Inc., Newark, N.J. Spectrographic analysisshowed the following major impurities: 0.1 to 1.0percent potassium; 0.01 to 0.1 percent sodium;and 0.001 to 0.01 percent each of aluminum,barium, calcium, and silicon.The color of the sample was yellow and it isoptically positive. The refractive indices areNa= 1.715, N0= 1.725, and N7= 1.759.The d-values of the three strongest lines are:3.207, 3.191, and 3.083 A.Structural data. Smith and Colby [1] in 1940determined that rubidium chromate has the potassium sulfate structure and the space groupD^-Pnam (No. 62) with 4(Rb2CrO4) per unit cell.The lattice constants reported by Smith andColby have been converted from kX to angstromunits for comparison with NBS values.19401963Smith andColbv [1].National Bureauof <strong>Standard</strong>sat 25° C.Lattice constantsaA7.9998. 001±.001boA10. 72610. 722±.001cA6. 3016.074±.001The density of rubidium chromate calculatedfrom NBS lattice constants is 3.657 g/cm3 at25° C.Reference[I] H. W. Smith, Jr. and M. Y. Colby, The crystal structure of rubidium chromate, B^CrO^ Z. Krist.103, 90-95 (1940).(orthorhombic)hkl020120200210121201130220211031002131221040230022310140122231320311212141240222330241150051042232400312401340420411123341, 251060213033430Internal <strong>Standard</strong>, 0Tungsten a = 3. 1648 ACu, 1.5405 A at 25 Cd' A5. 3654.4514. 0043. 7493. 5933. 3423. 2633.2073. 1913.0833. 0372.8722. 8382. 6802. 6642. 6442.5882.5412. 5092. 4422, 3882. 3802. 3592. 3442. 2262.2052. 1382. 0912.0712. 0212. 00982. 00352. 00101. 96971. 89971. 89081. 87371. 87031. 84261. 80471. 78591. 78131. 76211. 74617126143616181001009557413121833061154142214253011712411201812105796613151046


Silver Antimony Telluride, AgSbTe2 (cubic)<strong>Powder</strong> data cards. None.Additional published patterns. Geller and Wernick[1] 1959.NBS sample. The sample of silver antimonytelluride was obtained from Semitronics Inc., Winchester, Mass. Spectrographic analysis showedthe following major impurities: 0.01 to 0.1 percenteach of aluminum, bismuth, copper, iron, indium,and tin; and 0.001 to 0.01 percent each of gold,calcium, chromium, magnesium, nickel, and titanium.The sample was an opaque metallic g<strong>ray</strong>powder.The d-values of the three strongest lines are:3.042, 2.151, and 1.7554 A.Structural data. Geller and Wernick [1] in1959 determined that silver antimony telluride hasthe sodium chloride structure, the space group6>£-Fm3m (No. 225), and 2(AgSbTe2 ) per unitcell.19591963Lattice constantsGeller and Wernick [1] at 25 °C__National Bureau of <strong>Standard</strong>s at25 °C------ - --- - --------A6.0786.080The density of silver antimony telluride calculated from the NBS lattice constant is 7.163g/cms at 25 °C.hkl111200220311222400331420422511440531600620622444711640642dA3. 5113.0402. 1511. 83321. 75541. 52031. 39461. 35971. 24111. 17031. 07481. 02761. 01330. 9614.9166.8775. 8513.8433.8125Internal <strong>Standard</strong>,Tungsten, a =3. 1648 ACu, 1.5405 A at 25 °CAverage value of last fiv e lines_____._____6. 080Reference7110065


Sodium Magnesium Aluminum Boron Hydroxy Silicate, dravite (var. of tourmaline),NaMg3Al6B3Si6O27 (OH)4 (trigonal)—Continuedhkl(hex)101021300211220012131401410122321330312051042241003232511600502431303422223152161440342701413621710612104Internal <strong>Standard</strong>Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 CdA6.3774. 9814. 5954.2213.9853.4803. 3753. Ill3.0082. 9612. 8972. 6562. 6222, 5762. 4902.4512. 3962. 3762. 3422.3002. 1892. 1632. 1272. 1122.0542. 0402.0193.9911. 9201.9011.8771. 8491. 8281. 8171. 784hkl(hex)/28333250241753266541842626260316527155012452838119324


Sodium Trimetaphosphate, Na3P3O9 (orthorhombic)<strong>Powder</strong> data cards.Cardnumber11-648Indexlines3.403. 863. 04SourcedeWolff, Techn. Phys.Dienst, Delft, Holland.The ^-values of the three strongest lines are:3.407, 3.850, and 3.037 A.Structural data. Ondik and Gryder [2] in 1960determined that sodium trimetaphosphate has thespace group C2V-P2icn (No. 33) or Dl(No. 62) with 4(Na3P3O9 ) per unit cell.Additional published patterns. Corbridge andTromans [1].NBS sample. The sample of sodium trimetaphosphate was crystallized by heating sodiumtrimetaphosphate above the melting point (about650 °C) and then cooling slowly at the rate of5 to 10 °C an hour. Spectrographic analysisshowed the following major impurities: 0.001 to0.01 percent each of aluminum, barium, calcium,iron, potassium, magnesium, silicon, and titanium.The sample is colorless.hkl110Oil111021121200002, 130131211112022221041141202132212310240013150, 051311241113151232, 321123330060331Internal <strong>Standard</strong>,Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 °CdA6. 796. 655. 0955. 0154.2373.9603. 8503.4443.4073. 3513.3303. 1103.0372.8372.7622.7232.7062.5912. 5402.5222.5032.4572.4122.4062.3872.3402.2922.2672.2042. 1757435343485166348100313711551141221011351478118


Sodium Trimetaphosphate, Na3P3O 9 (orthorhombic)—ContinuedLattice constantsabcThe density of sodium trimetaphosphate calculated from the NBS lattice constants is 2.515g/cm3 at 25 °C.196019621963Oridik and Gryder[2].deWolff- -------National Bureauof <strong>Standard</strong>sat 25 °C.A7.937.9287. 930A13. 1413. 2213. 220A7. 757. 7037. 705References[1] D. E. C. Corbridge and F. R. Tromans, Identificationof sodium phosphates with an x-<strong>ray</strong> focusing camera,Anal. Chem. 30, 1101-1110 (1958).[2] H. M. Ondik and J. W. Gryder, Crystal chemistry ofthe hydrates of sodium trimetaphosphate, J. Inorg.Nucl. Chem. 14, Nos. 3/4, 240-246 (1960).<strong>Powder</strong> data cardsCardnumber1-097711-391Sodium Trimetaphosphate Monohydrate, Na3P3O 9 *H2O (orthohombic)Indexlines2. 843.032. 604. 963. 573. 01SourceNew Jersey Zinc Co.Corbridge and Tromans [1] 1958.Card number 12-10 also is called Na 3P3O 9-H2O;however, it contains a very different pattern,perhaps another form.Additional published patterns. None.NBS sample. The sample of sodium trimetaphosphate monohydrate was prepared atNBS by heating sodium dihydrogen orthophosphatefor 5 hr at 530 °C. Solid sodiumtrimetaphosphate was salted out with NaCland then recrystallized several times, Spectrographicanalysis showed the following majorimpurities: 0.001 to 0.01 percent each of aluminum, barium, calcium, iron, potassium, magnesium, silicon, and titanium.The sample is colorless and it is probablyoptically negative. The indices of refraction areN«= 1.493, N0= 1.502, and N T= 1.504.The ^-values of the three strongest lines are:3.566, 2.825, and (2.605 and 2.601)AStructural data. Ondik and Gryder [2] in 1960determined that sodium trimetaphosphate monohydratehas the space group C29v-P2icn (No. 33)or Di£-Pmcn (No. 62) with 4(Na3P3O g H2O) perunit cell.hkl110Oil111021121200130002012211131112022221122041141202310212132240311150051042013330113,232331123, 302312060052213Internal <strong>Standard</strong>, 0Tungsten, a = 3. 1648 ACu, 1.5405 A at 25 CdA7. 1446. 5535. 1954.9684. 2894. 2523. 9053. 7783. 6333. 5663. 4693. 3403. 2783. 2303. 0603. 0222. 8482. 8252. 7692. 7622. 7162. 6052. 6012. 5202. 4912. 4842.4742. 3822.3752. 2722. 2662.2352. 1982. 1632. 139/42384960325321715100646055887351001 /101J518\ }396174416


Sodium Trimetaphosphate Monohydrate, Na3P3


Stannous Fluoride, SnF2 (monoclinic)—ContinuedhklTil112204311312400204020021311315313502504222T16316524512420516602712, 224408008131,316524800132604Internal <strong>Standard</strong>,Tungsten, a =3. 1648 ACu, 1.5405 A at 25 °CdA4.4893. 5523.3793. 2983. 2003. 1552. 5712.4552. 4122.3272.3202. 3152.2252. 1092. 0842.0592. 0481.9861.9541.9381. 8541. 8331. 7761. 6901. 6291. 61861. 59971. 57691. 55941. 5504The density of stannous fluoride calculatedfrom the NBS lattice constants is 4.875 g/cm 3at 25 °C.hkl/5332100§1240 328280860028341191233-13 5322140833610912


Strontium 1:1 Berate, SrO-B2O3 (orthorhombic)Powdet data cards* None.Additional published patterns. None.NBS sample. The sample of strontium 1:1borate was prepared at NBS by C. E. Weir.A suspension of hydrogen 3:1 borate (boric acid)and strontium carbonate was evaporated to drynessand heated at 1000 °C. Spectrographucanalysis showed the following major impurities:0.01 to 0.1 percent each of barium and silicon;0.001 to 0.01 percent each of calcium and sodium.The sample is colorless and optically negativewith Na= 1.632, N^ 1.650, and N 7= 1.660.The d-values of the three strongest lines are:3.467, 6.013, and 2.688 A.Structural data. Block, Perloff, and Weir [1]in 1963 determined that strontium 1:1 boratehas the space group D^-Pnca (No. 60) and4(SrO-B2O3) per unit cell.19631963Block, Perloffand Weir [1].National Bureauof <strong>Standard</strong>sat 25 °C.Lattice constantsaA6.5776. 5890±.0004bA12. 0212. 018±.001c0A4. 3294. 3373± . 0005The density of strontium 1:1 borate calculatedfrom the NBS lattice constants is 3.350 g/cm3 at25 °C.Reference[1] S. Block, A. Perloff, and C. E. Weir. The crystallography of some M+2 borates, Acta Cryst. 17, 314(1964).hkl020111200210121040220131141240002022060, 151241122311202212331222260400420171, 242430351080062440113280262133371422460511153531282, 3332-10-05514803916001736201-11-16405712-10-2482, 373Internal <strong>Standard</strong>,Silver, a =4.0861 ACu, 1.5405 A at 25 Cd0A6. 0133. 4673. 2923. 1763. 1013. 0042. 8882. 6882.3132. 2212. 1692.0412. 0031. 9771. 9481. 9341. 8121. 792L 7601. 7341. 7121. 6471. 5891. 55181. 52321. 51921. 50231. 47121. 44471. 40201. 36671. 34341. 33201. 29111. 28201. 27241. 25431. 21741. 2027L 15641. 12911. 11651. 11001. 10361. 09801. 09061. 08041. 04611. 03131. 01611. 00130. 98791/J69100374715374067530272158974484231410


Terbium Arsenate, TbAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of terbium arsenatewas prepared at NBS from a water solution ofarsenic pentoxide and terbium trichloride. Itwas dried at 110 °C. Spectrographic analysisshowed the following major impurities: 0.01 to0.1 percent silicon; 0.001 to 0.1 percent each ofantimony, calcium, iron, magnesium, and lead.The sample was colorless. The indices of refraction could not be determined because thesample was too fine.The d-values of the three strongest lines are:3.550, 2.685, and 1.834 A.Structural data. No reference to the structureof terbium arsenate was found, but it is apparentlyisostructural with yttrium arsenate with the spacegroup DJ£-l4i/amd (No. 141) and 4(TbAsO4 ) perunit cell.Lattice constants1963 National Bureau of<strong>Standard</strong>s at 25 °C.aoA7. 1025cA6. 3536The density of terbium arsenate calculated fromthe NBS lattice constants is 6.172 g/cm3 at 25 °C.hkl101200112220202301103321312400420332204224512440600, 404532424116444316604624Internal <strong>Standard</strong>, 0Tungsten, a = 3.1648 ACo, 1.7889 A at 25 CdoA4. 7363. 5502. 6852. 5102. 3672. 2192.0291. 8821. 8341. 7751. 58781. 48091. 45001. 3423L 27551. 25531. 18381. 13731. 12301. 03640. 9849. 9577. 9495. 9168/81006922798653161514118134881245735Thallium Chromate, Tl 2CrO 4 (orthorhombic)<strong>Powder</strong> data cards. None.Additional published patterns. Abbad andRivoir [1] 1947.NBS sample. The sample of thallium chromatewas prepared at NBS from solutions of thalliumnitrate and sodium chromate. Spectrographicanalysis showed the following major impurities:0.1 to 1.0 percent lead; 0.01 to 0.1 percent eachof aluminum and silicon; and 0.001 to 0.01 percent each of barium, calcium, and antimony.The color of the sample was yellow. The refractive indices could not be determined becausethe sample was too fine.The rf-values of the three strongest lines are:3.145, 3.060, and 3.186 A.Structural data. Abbad and Rivoir [1] in 1947determined that thallium chromate has the potassium sulfate structure, the space group Dih-(No. 62), and 4(Tl 2CrO4 ) per unit cell.The lattice constants reported by Abbad andRivoir have been converted from kX to angstromunits for comparison with the NBS values.19471963Abbad and Rivoir[!]____________National Bureauof <strong>Standard</strong>sat 25 °C—_--.Lattice constantsaA7. 827.908±.001boA10. 7010. 730±. 001cA5. 925.913±. 001The density of thallium chromate calculatedfrom the NBS lattice constants is 6.946 g/cm3at 25 °C.54


Thallium Chromate, Tl2CrO4 (orthorhombic)—ContinuedhklInternal <strong>Standard</strong>, 0Tungsten, a=3.1648 ACu, 1.5405 A at 25 ChklInternal <strong>Standard</strong>,Tungsten, a ==3. 1648 ACu, 1.5405 A at 25 Cd/d/020Oil120111210A5. 375. 194. 454. 3373. 71458122315430033332152161A1. 73051. 72591. 72351. 69631. 672622191415131212011302202113. 5533. 2903.2633. 1863. 145542724571004314022604122521. 66031. 64341. 62941. 62501. 590395556031002221040, 1122303.0602. 9582. 8052. 6852.654965314616422, 2611430625205111. 57131. 55731. 52991. 51671. 512510366668755465344655563101401223203112. 5612.5402. 4612. 3662. 3492825158131704320710045211. 50451. 49311. 48371. 47821. 46961412122403211322. 3362. 3142. 2212. 1972. 1911010111513450361262] 24, 4424031. 45391. 43551. 42711. 40201. 39592223302411500512. 1672. 1222.0792.0712.017329171544135403435221341. 38421. 36231. 36021. 34981. 3462440232151312142250401420322,4111233410602422032131.9771. 9751.9541. 9361. 92701. 88631. 87501. 85531. 84721. 80131. 79211. 78851. 77551. 76401. 740919166141391215142626147717Reference080, 172,2243706001. 34101. 32501. 3182[1] M. Abbad and L. Rivoir, La estructura del cromatotalioso, Anales Soc. espafi. fis. y. quim 43, 831-836(1947)6455


Thulium Arsenate, TmAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of thulium arsenatewas prepared at NBS from a water solution ofarsenic pentoxide and thulium trichloride. It wasdried at 110 °C. Spectrographic analysis showedthe following major impurities: 0.01 to 0.1 percenteach of silicon and antimony; 0.001 to 0.01 percenteach of aluminum, calcium, iron, lead, andmagnesium.The sample was colorless. The indices of refraction could not be determined because thesample was too fine.The d-values of the three strongest lines are:3.497, 2.644, and 1.8064 A.Structural data. No reference to the structureof thulium arsenate was found, but it is apparentlyisostructural with yttrium arsenate with the spacegroup t DJS-!4i/amd (No. 141) and 4(TmAsO 4 )per unit cell.Lattice constants1963 National Bureau of<strong>Standard</strong>s at 25 °CaA6. 9939± 0. 0003cA6. 2595± 0. 0003The density of thulium arsenate calculated fromthe NBS lattice constants is 6.678 g/cm 3 at 25 °C.hkl101200211112220202301103321312400213420332204501224512440600, 404532424, 620116415, 613444, 640316, 552604624336, 732800217820516644536Internal <strong>Standard</strong>,Tungsten, a=3.1648 ACu, 1.5405 A at 25 CdA4 6673. 4972. 7962. 6442. 4732. 3332. 18511. 99931. 85241. 80641. 74831. 73541. 56381. 45841. 42811. 38531. 32241. 25661. 23611. 16601. 11991. 10601. 02071. 00730. 9701. 9433. 9349. 9032. 8814. 8743. 8597. 8480. 8304. 8245. 78727111005722351077551631515143811478123


Titanium Dioxide, brookite, TiO2 (orthorhombic)<strong>Powder</strong> data cardsCardnumberIndexlinesSourcehklInternal <strong>Standard</strong>,Silver, a = 4.0861 ACuX= 1.5405 A at 25 C3-03803.472. 901.88British Museum.Additional published patterns. Sturdivant andPauling [1].NBS sample. The sample of brookite wasobtained from the U.S. National Museum. No.97661 from Magnet Cove, Ark. Spectrographicanalysis showed the following major impurities:0.1 to 1.0 percent silicon; 0.01 to 0.1 percenteach of aluminum, iron, and vanadium; 0.001 to0.01 percent magnesium.The color of the sample was black. Theindices of refraction were not determined becausethey were higher than 2.00.The d-values of the three strongest lines are:3.512,2.900, and 3.465 A.Structural data. Sturdivant and Pauling [1]in 1928 determined that brookite has the spacegroup D^-Pcab (No. 61) and 8(TiO2 ) per unitcell. Several lattice constants have been converted from kX to angstrom units for comparisonwith the NBS values.1928192819321963Sturdivant andPauling [1].Schroder [2]__.._Phillips [3]......National Bureauof <strong>Standard</strong>sat 25 °C.Lattice constantsaA5.4475. 4505. 44* 5. 4558±. 0004b 5. 456±.002bA9. 1859. 1549. 209. 1819±. 00079. 174±.001cA5. 1455. 1635 1 A5. 1429±. 00035. 138±.001* Sample described above.b Sample from the National Museum No. R2108 from von der Soule, Virven,Tyrol, Spectrographic analysis showed the following major impurities: 0.1to 1.0 percent iron; 0.01 to 0.1 percent each of magnesium, silicon, and vanadium; and 0.001 to 0.01 percent each of aluminum, barium, and manganese.The lattice constants given were derived from powder pattern data.The density of brookite calculated from theNBS lattice constants (a) is 4.120 g/cm3 at 25 °C.References[1] J. H. Sturdivant and L. Pauling, The crystal structureof brookite, Z. Krist. 68, 239 (1928).[2] A. Schroder, Rontgenographische Feinbauuntersuchungam Brookit und iiber physikalische Eigenschaftender drei Titandioxyde, Z. Krist. 66, 493 (1928).[3] F. C. Phillips, Crystals of brookite tabular parallel tothe basal plane, Min. Mag. 23, 126-129 (1932).120111121200012201131220211040112022221032231132212240320241151113232123052160312251203152213161400332401233004024, 171431124333080441044521, 423281324125372, 254dA3. 5123. 4652.9002. 7292. 4762. 4092. 3702.3442. 3322. 2962.2542.2442. 1331. 96851. 89341. 85141. 83321. 75681. 69081. 66171. 64861. 60981. 59681. 54081. 49421. 47291. 46561. 46091. 45151. 44151. 43361. 41671. 36401. 33581. 31861.31161. 28521. 23811. 21071. 20741. 15521. 14801. 14321. 12171. 03991. 03661. 02370. 9873.9829I1007991423186445818161628183321285132710491212610958322102142243242457


Zinc Telluride, ZnTe (cubic)<strong>Powder</strong> data cardsCardnumber1-0582Indexlines3. 502. 141.83SourceNew Jersey Zinc Co.Additional published patterns. None.NBS sample. The sample of zinc telluridewas obtained from Semi-Elements, Inc., Saxonburg,Pa. Spectrographic analysis showed thefollowing major impurities: 0.01 to 0.1 percentof silicon/ and 0.001 to 0.01 percent each ofaluminum, barium, iron, and magnesium.The color of the sample was reddish-brown.The indices of refraction were too high to bedetermined by the usual grain-immersion method.The ^-values of the three strongest lines are:3.523, 2.159, and 1.840 A.Structural data. Zachariasen [1] in 1925 determined that zinc telluride has the zinc sulfidestructure, the space group T;j~-F43m (No. 216),and 4[ZnTe] per unit cell. The unit cell measurement reported by Zachariasen has been convertedfrom kX to angstrom units for comparison withthe NBS value.hkl111200220311222400331420422511440531600620533622444711642731dA3. 5233. 0512. 1591. 8401. 7621. 5261. 40031. 36451. 24561. 17451. 07891. 03151. 01710. 9648. 9307. 9200. 8808. 8545. 8155. 7945Internal <strong>Standard</strong>Tungsten, a = 3.1648 ACu, 1.5405 A at 25 CAverage value of last five lines ___7100108137381331073616311686aA6. 1026. 1026. 1076. 1036. 1026. 1036. 1046. 1026. 1026. 1036. 10286. 10426. 10266. 10226. 10286. 10266. 10266. 10246. 10266. 10266. 1026Lattice constantsA19251963Zachariasen [1]National Bureau of <strong>Standard</strong>sat 25 °C___. _______________6. 1016. 1026ReferenceThe density of zinc telluride calculated fromthe NBS lattice constant is 5.639 g/cm 3 at 25 °C.[1] W. Zachariasen, The crystal structure of the telluridesof zinc, cadmium, and mercury, Norsk, geol.Tidskrift 8, 302-306 (1925).58


CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, AND 3 sAluminum, Al_________________________Aluminum antimony, AlSb_______________Aluminum calcium sulfate hydrate (ettringite),Al203 .6CaO.3SO3.3lH 2O_ _____----Aluminum chloride hexahydrate (chloraluminite),A1C13;6H 2O__ _____________Aluminum fluosilicate, topaz,Al2Si04 (F,OH) 2 ________ _________________Aluminum metaphosphate, A1(PO3) 3 _ ------Aluminium orthophosphate (berlinite),A1PO4 (trigonal) —------__--------.---Aluminum orthophosphate, A1PO 4 (orthorhombic)_____________________________Aluminum oxide, (corundum), alpha A12O3 __Aluminum oxide monohydrate (bohmite),alpha A1 2 O3 .H 2O__ _________-___-__-_---Aluminum oxide monohydrate diaspore,beta A1203 .H 2O__-_--_-----.-_-._-_-----Aluminum 3:2 silicate (mullite),3Al2O3'2SiO2 ___--__________-____--_---Ammonium aluminum sulfate dodecahydrate(teschermigite), NH4A1(SO4) 2 -12H2O_Ammonium azide, NH 4N3 _ _-________-_---Ammonium bicarbonate (teschemacherite),(NH 4)HCO3 _ ____-___-_-___-_______---Ammonium bromide, NH 4Br_ ____________Ammonium bromoosmate, (NH 4)QsBr6-----Ammonium bromoplatinate, (NH4) 2PtBre---Ammonium bromoselenate, (NH4) 2SeBre----Ammonium bromotellurate, (NH 4) 2TeBr6___Ammonium chloride (sal-ammoniac),Ammonium chloroiridate (NH 4)_IrCl 6 _ _____Ammonium chloroosmate, (NH 4) 2OsCl 6_____Ammonium chloropalladate, (NH 4) 2 PdCl6_--Ammonium chloropalladite, (NH 4) 2 PdCl 4 ___Ammonium chloroplatinate, (NH 4) 2PtCl6_ __Ammonium chlorostannate (NH4) 2SnCle----Ammonium chlorotellurate, (NH4) 2Te Cle---Ammonium chromium sulfate dodeeahydrate, NH 4Cr(SO4) 2.12H 2O-____ _„______Ammonium dihydrogen phosphate,NH4H 2 PO4.——.......................Ammonium fluoberyllate, (NH 4) 2BeF4______Ammonium fluoborate, NH 4BF4__________Ammonium fluogermanate, (NH 4) 2 GeFe_ __-Ammonium fluosilicate (cryptohalite),(NHO.aSiFe---. —---- — — - — .-----Ammonium gallium sulfate dodeeahydrate,NH4Ga(SO4)r 12H 2O_______ ____--____--Ammonium iodide, NH4I_________________Ammonium iron sulfate dodeeahydrate,NH 4Fe(S04) 242H 20_ _-_____________---Ammonium metayanadate, NH 4VO3 _ ______Ammonium nitrate (ammonia-niter),NH4NQ3 _ ___________________________Ammonium oxalate monohydrate (oxammite),(NH 4) 2 C2 O4 .H 2O_________________Ammonium perchlorate, NH 4C1O 4 , (orthorhombic)_____________________________Ammonium perrhenate, NH4ReO 4__^___-__Ammonium phosphomolybdate tetrahydrate,(NH 4) 3PO4 (MoO3)i 2 -4H 2O_______--Ammonium sulfate (mascagnite), (NH4) 2SO4(revised) _____________________________Ammonium zirconium fluoride, (NH 4) 3ZrF7-Antimony, Sb_________________________Antimony (III) fluoride, SbF3_.._____-__._Vol. orsec.14871m2m10109333m69923988181m8655643m3m66468777989632mPage1172334343384133454971645« Frrther work on this program is in progress, and it is anticipated thatadditional sections will be issred. Therefore, the accumulative index hereIs not necessarily the concluding index for the project.m—Monograph 25.5966763486456956109456710814144Vol. orsec. PageAntimony (III) iodide, SbI3-_ — ___________ 6 16Antimonv (III) oxide (senarmontite), Sb2O 3(cubic)*.. __ __-__--_____-__________.__- 3 31Antimony (III) oxide, valentinite, Sb2 O3(orthorhombic)___ _______ ___„___„_,____ 10 6Antimony (IV) oxide (cervantite), Sb2 O4___ 10 8Antimony (V) Oxide, Sb2O£_______________ 10 10Antimony selenide, Sb 2Se 3 _----_-_--_---_- 3m 7Antimony (III) sulfide (stibnite), Sb 2 S3--_-- 5 6Antimony telluride, Sb2Te3 __ _____________ 3m 8Arsenic, As_____________________________ 3 6Arsenic (III) iodide, Asls----------------- 6 17Arsenic trioxide, claudetite, As 2O 3 (monoclinic)_--____--____-______________--_-3m 9Arsenic trioxide (arsenolite), As2O3 (cubic).- 1 51Barium, Ba_--_-________________________ 4 7Barium arsenate, Ba3(AsO4)2_------------- 2m 6Barium bromide monohydrate, BaBr2 -H 2O__ 3m 10Barium carbonate (witherite), BaCO3 (orthorhombic)---_____--„--_-__-_-_--__-_-_ 2 54Barium carbonate, BaCOa (cubic) at1075 °C_____________________________ 10 11Barium fluoride, BaF 2____________________ 1 70Barium molybdate, BaMoO4______________ 7 7Barium nitrate (nitrobarite), Ba(NO3) 2___ __ 1 81Barium perchlorate trihydrate,Ba(ClO4) 2-3H 2O_ _____;___„__________ 2m 7Barium peroxide, BaO 2___________________ 6 18Barium stannate, BaSnO3 _________-_--_-- 3m 11Barium sulfate (barite), BaSO4 __________ __ 3 65Barium sulfide, BaS_ ____________________ 7 8Barium titanate, BaTiO3 . ___„,___________ 3 45Barium tungstate, BaWO4________________ 7 9Barium zirconate, BaZrO3 _ _______________ 5 8Beryllium aluminum oxide (chrysoberyl),BeAl 2O4 __.___---______._________-__-- 9 10Beryllium aluminum silicate, beryl,Be 3 Al2(SiO3)8------------------------- 9 13Beryllium chromium oxide, BeCr2O4 _ ______ 10 12Beryllium germanate, Be 2 GeO4 ____________ 10 13Beryllium orthosilicate, phenacite, Be 2Si04 __ 8 11Beryllium oxide (bromellite), BeO_ ________ 1 36Bismuth, Bi_ __________________________„ 3 20Bismuth fluoride, BiF3 _ __________________ 1m 7Bismuth (III) iodide, BiI 3 _ ____-_____.__-_ 6 20Bismuth orthophosphate, BiPO4 (monoclinic)_ ___„_________________________ 3m 11Bismuth orthophosphate, BiPO4 (trigonal)-. 3m 13Bismuth orthovanadate, low form, BiVO4(t etragon al) _ -______-_________-_-___- 3m 14Bismuth orthovanadate, high form, BiVO 4(monoclinic) __________________________ 3m 14Bismuth oxybromide, BiOBr______________ 8 14Bismuth oxychloride (bismoclite), BiOCl_ _- 4 54Bismuth oxyiodide, BiOI_______________ __ 9 16Bismuth sulfide (bismuthinite), Bi 2S3_----_- 4 23Bismuth telluride (tell urob ism uthite),Bi2Te 3______________________________ 3m 16Bismuth trioxide (bismite), alpha Bi2 O3 ____ 3m 17Cadmium, Cd-_-__--___________-__---_ __ 3 10Cadmium bromide, CdBr2 _________--_---- 9 17Cadmium carbonate (otavite), CdCO3______ 7 11Cadmium chloride, CdCl2_______________ 9 18Cadmium cyanide, Cd(CN) 2-------------- 2m 8Cadmium molybdate, CdMoO4_-__---_---- 6 21Cadmium oxide, CdO__-_________-------- 2 27Cadmium perchlorate hexahydrate,Cd(Cl0 4) 2 .6H 2O--.__-.__.:____--_--_-_ 3m 19Cadmium selenide, CdSe, (hexagonal)._---_ 7 12Cadmium sulfate, CdSO 4._.___...,....... 3m 20Cadmium sulfide (greenockite), CdS_______ 4 15Cadmium telluride, CdTe ________________ 3m 21Cadmium tungstate, CdWO 4_........... 2m 859


CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, AND 3 5—Continuedtri-Calcium aluminate, 3CaO-Al2O3_ ___Calcium aluminate 12:7, 12CaO-7Al 2 O 3 _Calcium aluminum germanate,-Calcium bromide hexahydrate, CaBr2 -6H 2O_Calcium carbonate (aragonite), CaCO 3 (orthorhombic)__________________________Calcium carbonate (calcite) CaCO 3 (hexagonal) --_-__-_--_________----__-__-_-__Calcium chromate, CaCrO 4 _ ______________Calcium chromium germanate,Calcium chromium silicate (uvarovite),Ca 3Cr 2 (SiO4) 3 - ------------------------Calcium fluoride (fluorite), CaF 2.__-_______Calcium fluoride phosphate (fluorapatite),Ca5F(PO 4) 3 _ __________________________Calcium formate, Ca(HCO2) 2 .- -----------Calcium gallium germanate, Ca3 Ga2(GeO4)a-Calcium hydroxide (portlandite), Ca(OH) 2 __Calcium iron germanate, Ca3Fe2 (GeO4) 3 __ -_Calcium iron silicate (andradite),- --Calcium molybdate (powellite), CaMoO 4 ___Calcium nitrate, Ca(NO3)2----------------Calcium oxide, CaO _____________________Calcium sulfate (anhydrite) , CaSO4 _ _______Calcium suifide (oldhamite), CaS___ _______Calcium tungstate scheelite, CaWO 4 _ ______Carbon, diamond, C_____________________Cerium (III) chloride, CeCl3 _ _____________Cerium (III) fluoride, CeF3 _ ______________Cerium, magnesium nitrate 24-hydrate,Ce2Mg3 (NO3) 12 .24H 2O___________..-___Cerium niobium titanium oxide (eschynite),CeNbTiOe-.--- -------- --.-.-----.-.--Cerium (IV) oxide (cerianite) CeO2 _ _ ____Cerium (III) vanadate, Ce VO4 _ ___________Cesium aluminum sulfate dodecahydrate,CsAl(SO4) 2-12H 2O_ ______„_________-___Cesium bromate, CsBrO3 ____ _____________Cesium bromide, CsBr_____ ______________Cesium bromoosmate (IV), Cs2OsBr6 _ ______Cesium bromoplatinate, Cs2PtBre_ .-_______Cesium bromoselenate, Cs2SeBr6-_ _________Cesium bromotellurate, Cs 2TeBre_ _________Cesium chlorate, CsClO3 __ _______________Cesium chloride, CsCl_______ _____________Cesium chloroosmate (IV), Cs 2OsCl6 _ ______Cesium chloroplatinate, Cs 2 Pt C1 6 ________-„Cesium chlorostannate, Cs2SnCl6 _ _________Cesium chromate, Cs2CrO 4___-_ __________„Cesium chromium sulfate dodecahydrate.CsCr(SO4) 2 .12H 2O____ _________________Cesium dichloroiodide, Csl C12 _ _ ___________Cesium fluoborate, CsBF 4 _ _______________Cesium fluogermanate, Cs 2GeFe_ __________Cesium fluoplatinate, Cs2PtF 6 _ ____________Cesium fluoride, CsF_____ ________________Cesium fluosilicate, CssSiFe — ------- — _-.__Cesium gallium sulfate dodecahydrate,CsGa(SO4) 2 -12H 2O______ _______________Cesium iodide, Csl ______________________Cesium iron sulfate dodecahydrate,CsFe(S0 4)r 12H 2O_ ____________________Cesium nitrate, CsNO3_________________ __Cesium perchlorate, CsClO4, (orthorhombic) _Cesium sulfate Cs2 SO 4 __ ________________Cesium vanadium sulfate dodecahydrate,CsV(S04) 2.12H 20___-_-_________ _______Chromium, Cr-_________________________Chromium orthophosphate, alpha, CrP0 4 _m— Monograph 25.60Vol. or Vol. orsec. Page sec. Page5 10 Chromium orthophosphate, beta, CrPO 4____ 9 269 20 Chromium (III) oxide, Cr2O 3 _ _-----__----- 5 22Chromium silicide, Cr3Si_ ________________ 6 2910 15 Cobalt aluminum oxide, CoA1 2O 4 _ _________ 9 278 15 Cobalt arsenide (skutterudite), CoAs3------ 10 21Cobalt(II) carbonate (spherocobaltite),3 53 CoCOs—----------------------------- 10 24Cobalt diarsenide, CoAs 2 _ _------_-----_-- 10 262 51 Cobaltfluosilicatehexahydrate,CoSiF 6-6H 2O- 3m 277 13 Cobalt gallate, CoGa 2O 4__________________ 10 27Cobalt germanate, Co2GeO 4__-_-___-_-____ 10 2710 16 Cobalt iron arsenide (safflorite), CoFeAs 4___ 10 28Cobalt mercury thiocyanate, Co[Hg(CNS) 4]_ 2m 1310 17 Cobalt(II) oxide, CoO------. ——- —— — 9 281 69 Cobalt(II, III) oxide, CosO 4-------------- 9 29Cobalt perchlorate hexahydrate, Co(ClO4) 2 -3m 22 6H 2O______-____-_-_____-_---_---_--_ 3m 288 16 Cobalt sulfate, beta, CoSO4_______________ 2m 1410 18 Copper, Cu__________-_-___-_--------__- 1 151 58 Copper (I) bromide, CuBr ________________ 4 3610 19 Copper carbonate basic, azurite, Cua(OH) 2(COa)2----------------------------- 10 309 22 Copper carbonate, basic, (malachite),6 22 Cu2 (OH) 2CO3 ____________-__-_____-_._ 10 317 14 Copper(I) chloride (nantokite), CuCl______ 4 351 43 Cop per (I) iodide (marshite), Cul__________ 4 384 65 Copper (I) oxide (cuprite), Cu 2O___ ________ 2 237 15 Copper(II) oxide (tenorite), CuO__________ 1 496 23 Copper sulfate (chalcocyanite), CuSO 4__ __ 3m 292 5 Copper(II) suifide (covellite), CuS_________ 4 131m 8 Dysprosium arsenate, DyAsO 4 _ ___________ 3m 308 17 Dysprosium gallium oxide 3:5,Dy3Ga2(GaO4)s-- —----------------- 2m 1510 20 Dysprosium sesquioxide, Dy 2 O3 _ __________ 9 30Erbium arsenate, ErAsO 4 _________________ 3m 313m 24 Erbium gallium oxide 3:5, Er3Ga 2 (GaO 4) 3_-- 1m 121 56 Erbium manganite, ErMnO 3 ______________ 2m 161m 9 Erbium phosphate, ErPO 4___-__--________ 9 31Erbium sesquioxide, Er2O 3 _ _______________ 8 256 25 Europium arsenate, EuAsO 4 _ _____________ 3m 328 18 Europium (III) chloride, EuCl 3 __ _________ 1m 133 49 Europium gallium oxide 3:5, Eu3Ga2 (GaO 4) 3 _ 2m 172m 10 Europium oxychloride, EuOCl. ___________ 1m 138 19 Gadolinium fluoride, GdF3______________ 1m 148 20 Gadolinium gallium oxide 3:5,9 24 Gd 3Ga2(GaO 4) 3-_____-__----__----_--_- 2m 188 20 Gadolinium oxide, Gd 2O3 __________-___-__ 1m 162 44 Gadolinium oxychloride, GdOCl_________ 1m 172m 11 Gallium, Ga---------- — — ------ — — --— 2 95 14 Gallium arsenide, GaAs_----------------- 3m 335 16 Gallium antimonide, GaSb________________ 6 303m 25 Gallium oxide, alpha, Ga2Os_------------- 4 25Gallium phosphate (a-quartz type), GaPO 4 __ 8 278 21 Germanium, Ge____________-_--______--- 1 183 50 Germanium dioxide, GeO 2 (hexagonal)8 22 (lowfprm)_______________-____________ 1 515 17 Germanium dioxide, GeO 2 (tetragonal)6 27 (highform)_____-_,___-_______-„______ 8 283m 26 Germanium(IV) iodide, GeI 4 _______-_-___- 5 255 19 Gold, Au_---_- — ----_ —------ — — — — -- 1 33Gold antimony 1: 2 (aurostibite), AuSb2 ___ 7 188 23 Gold(I) cyanide, AuCN_ ____________„___ 10 334 47 Gold tin, 1:1 AuSn-- — — — —— — — — — — 7 19Hafnium, Hf_______.____________________ 3 186 28 Holmium arsenate, HoAsO 4_______________ 3m 349 25 Holmium ethylsulfate nonahydrate,1m 10 Ho [(C2H) 5SO 4] 3-9H2O______ — __-____--_ 1m 187 17 Holmium sesquioxide, Ho2O 3______________ 9 32Indium, In ______________ _ _____________ 3 121m 11 Indium antimony, InSb_ _________________ 4 735 20 Indium arsenide, InAs_-__---.-_-_-__--_-- 3m 352m 12 Indium oxide, In 2O3_ — -----...-_ — _- — — 5 26Indium phosphate, InPO 4___--_-_-_ — _-.- 8 29


CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, AND 3 6—Continuedlodic acid, HIOs-—- — —-------Iodine, I 2_--------------------Iridium, Ir___--..------------Iron, alpha Fe________________Iron arsenide, FeAs____________Iron arsenide (loellingite), FeAs2Iron sulfide (pyrite), FeS 2Vol. orsec..___.-_ 5_______ 3_______ 44_______ 1m_______ 105Lanthanum arsenate, LaAsO 4 _____________ 3mLanthanum borate, LaB03___-____________ 1mLanthanum chloride, LaCl3 _______________ 1mLanthanum fluoride, LaF 3 ________________ 7Lanthanum magnesium nitrate 24-hydrate,La 2Mg3 (NO 3)i 2 .24H 2O_-___- ____________ 1mLanthanum niobium titanium oxide,LaNbTiO 6~_------------------------- 3mLanthanum oxide, La 2O3________________ 3Lanthanum oxychloride, LaOCl___________ 7Lead, Pb-. —-- ——— —— --- — --- 1Lead bromide, PbBr2 ____-___-„-_______-- 2Lead carbonate (cerrussite), PbCO 3________ 2Lead chloride (cotunnite), PbCl2 _ _________ 2Lead formate, Pb(HCO 2) 2 __ ______________ 8Lead fluochloride (matlockite), PbFCL_.__ 1Lead fluoride, alpha PbF 2 (orthorhombic) _ 5Lead fluoride, beta PbF2 (cubic) __._____._ 5Lead (II), iodide, PbI 3 - ———— ——----- 5Lead molybdate (wulfenite), PbMoO 4 _---_ 7Lead monoxide (litharge), PbO (red) tetragonal-.--—.———-—————-——-— 2Lead monoxide (massicot), PbO (yellow)(orthorhombic) ___-___---______--_-__- 2Lead nitrate, Pb(NO 3) 2___________________ 5Lead (II, III) oxide (minium), Pb3 O 4 _„___ 8Lead phosphate hydrate, Pb6(P0 4) 3OH__ __ 8Lead selenide (clausthalite), PbSe_ ________ 5Lead sulfate (anglesite), PbSO 4__________ 3Lead sulfide (galena), PbS—— — — — — —— 2Lead titanate, PbTi03 _ __________________ 5Lead tungstate (stolzite), PbWO4________ 7Lithium arsenate, Li3AsO 4 ________________ 2mLithium bromide, LiBr___--___-______--_- 4Lithium chloride, LiCl_ __________________ 1Lithium fluoride, LiF ____________________ 1Lithium iodate, LiI0 3____________________ 7Lithium molybdate, Li 2MoO4 , (trigonal)____ 1mLithium oxide, Li 2O-__--_________________ 1mLithium nitrate, LiNO 3__________„______ 7Lithium perchlorate trihydrate, LiClO 4 -3H 2O 8Lithium phosphate, low form, (lithiophosphate),Li 3PO4--_---------__--_~------ 3mLithium phosphate, high form, Li3PO4______ 3mLithium trimetaphosphate trihydrate,Li3P3Or3H 2O_ ________________________ 2mLithi um tungsta te, Li 2 W O4 , (t rig on al) --____ 1mLithium tungstate hemihydrate,Lutetium gallium oxide 3:5, Lu 3Ga 2 (GaO 4)a_ - 2mLutetium manganite, LuMnO 3 _ ___________ 2mLutetium oxide, Lu 2O 3 ___________________ 1mMagnesium, Mg_______________________ 1Magnesium aluminate (spinel), Mg A1 2O 4___ 2Magnesium aluminum silicate (low-cordierite),Mg2Al4 Si5 Oi 8 (orthorhombic).-__-- 1mMagnesium aluminum silicate (high-cordierite),Mg2Al4Si5Oi8 (hexagonal)_____..__ 1mMagnesium ammonium phosphate hexahydrate, (struvite), MgNH 4PO4 -6H 2O_______ 3mMagnesium carbonate (magnesite), MgCO 3 _ 7Magnesium chromite (picrochromite),MgCr20 4 _ ____________________________ 9Magnesium fluoride (sellaite), MgF2 _ ______ 4Magnesium gallate, MgGa 2O 4 .__-______._- 10m—Monograph 2o.Page281693193429362021212237332234475645307631333423303236323338671839241930626126232527343839202520222327103528294128343336Magnesium germanate, Mg 2GeO4 (cubic)___Magnesium " _ " germanate, „ Mg2GeOM ~ 4 (orthorhombic)Magnesium hydroxide (brucite), Mg(OH) 2__Magnesium oxide (periclase) , MgO ________Magnesium silicate, enstatite, MgSiO 3 _Magnesium silicate (forsterite), Mg 2SiO 4____Magnesium silicate fluoride (norbergite) ,MgaSiOi-Mg!)- ---------------------Magnesium silicate fluoride (humite),3Mg2Si0 4.MgF 2 _ ______________________Magnesium sulfate heptahydrate (epsomite),Vol. orsec.10Magnesium sulfide, MgS_ ________________Magnesium tin, Mg 2Sn--____-__-_________Magnesium titanate (geikielite), MgTiO 3 ___Magnesium tungstate, MgWO4____________Manganese aluminate (galaxite), MnAl 2 O4 __Manganese (II) carbonate (rhodochrosite),MnCO3 _ _____________________________Manganese ferrite (jacobsite), MnFe2 O4 ____Manganese(II) oxide (manganosite), MnO.Manganese (III) oxide (partridgeite), Mn 2 O3 _Manganese selenide, MnSe_ ______________ 10Manganese sulfide (alabandite),alpha MnS___________________________Manganese (II) tungstate (huebnerite),2mMercury (I) bromide, Hg 2Br2 _ _ _ _ _ _ ________ 7Mercury(I) chloride (calomel), Hg2 Cl2 ______ 1Mercury (II) chloride, HgCl2____ __________ 1Mercury(II) cyanide, Hg(CN) 2 ___ ________ 6Mercury (II) fluoride, HgF 2 _ ______________ 2mMercury (I) iodide, Hgl_ __________________ 4Mercury (II) iodide, HgI2_______ __________ 1Mercury(II) oxide (montroydite), HgO__(revised) ___________________-_____„___ 9Mercury(II) selenide (tiemannite), HgSe _ _ 7Mercury (II) sulfide (cinnabar), HgS (hexagon al) _______________________________ 4Mercury (II) sulfide (metacinnabar), HgS(cubic) _______________________________ 4Molybdenum, Mo_ ______________________ 1Molybdenum disuifide (molybdenite), MoS2 5Molybdenum trioxide (molybdite), MoO 3 _ 3Neodymium borate, NdBOa-------.-----.- 1mNeodymium chloride, NdCl 3 ____________ _. 1mNeodymium ethylsulfate nonahydrate,Nd[(C 2H 5)SO 4]3 -9H 2O_ _________________ 9Neodymium fluoride, NdF3 _____________ __ 8Neodymium gallium oxide 3:5,Nd 3 Ga2 (Ga04) 3 __ ______________________ 1mNeodymium oxide, Nd 2Oa_ _______________ 4Neodymium oxychloride, NdOCl. _________ 8Nickel, NL _____________________________ 1Nickel aluminate, NiAl2 O4 _ _______________ 9Nickel arsenic 1: 2 (rammelsbergite), NiAs 2 _ 10Nickel arsenic sulfide (gersdorffite), NiAsS) _ 1mNickel (II) carbonate, NiCO3 (trigonal) ____ 1mNickel ferrite (trevorite), NiFe20 4 . ________ 10Nickel fluosilicate hexahydrate, NiSiF6 -6H2O_ 8Nickel gallate, NiGa^. ----------------- 10Nickel germanate, Ni 2GeO u _____„__„_____ 9Nickel (II) oxide (bunsenite), NiO_ _______ 1Nickel sulfate, NiSO4 -- — - — - — — — — --— 2mNickel sulfate hexahydrate (retgersite) ,NiSO 4 -6H 2 O_ ___________________„_____ 7Nickel sulfide, millerite, NiS______________ 1mNickel tungstate, Ni WO4 __ _______________ 2mNiobium silicide, NbSi2 _ ___________„__„__ 8Osmium, Os-__-_-------______-_-______- 4Palladium, Pd. ____._______..-____._____ 1Palladium oxide, PdO_ ___________________ 4106161101m77551979593738303732833930303141438435323645374111243372733525497439351721204730323341363426371342423536443845434726363727398212761


CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, AND 3 5—ContinuedVol. orsec. PagePlatinum, Pt. __________________________ 1 31Potassium aluminum sulfate dodecahydrate(alum), KA1(S0 4)2-12H2O_.___________ 6 36Potassium borohydride, KBH 4 ----------- 9 44Potassium bromate, KBrO 3-__------------ 7 38Potassium bromide, KBr_________________ 1 66Potassium bromoplatinate, K 2PtBr 6 _ ______ 8 40Potassium bromoseleriate, K^SeBre--------- 8 41Potassium chlorate, KC10 3 _ ______________ 3m 42Potassium chloride (sylvite), KCL ________ 1 65Potassium chloroplatinate, K 2PtCl6____-_ _- 5 49Potassium chlororhenate, K 2 ReCl6_ ------- 2m 28Potassium chlororuthenate (IV), K 2RuCl 6 _- 10 46Potassium chlorostannate, K 2SnCl6--_-___- 6 38Potassium chromium sulfate dodecahydrate,KCr(SO


CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, AND 3 5—ContinuedStrontium 1:1 borate, SrO-B2O 3-__--------Strontium bromide hexahydrate, SrBr2 -6H 2O_Strontium carbonate (strontianite), SrCOa--Strontium chloride, SrCl2_________________Strontium chloride hexahydrate, SrCl2-6H 2O_Strontium fluoride, SrF2—— ______________Strontium formate, Sr(CH02) 2 _ ___________Strontium formate dihydrate,Sr(CH 0 2) 2-2H 20 (orthorhombic) ________Strontium iodide hexahydrate, SrI 2-6H2O___Strontium molybdate, SrMoO4__----------Strontium nitrate, Sr(NO3) 2———__________Strontium oxide, SrO_ __-_ — _____-____,-_Strontium peroxide, SrO2__-___- — -_-. — .—Strontium sulfate (celestite), SrSO4--------Strontium sulfide, SrS-._________ — ..._,—Strontium titanate, SrTiO3 -______________Strontium tungstate, SrWO4 __--____.------Strontium zirconate, SrZrOs- ___--___-_---Sulfamic acid, NH 3SO 8- —-------------Sulfur, S.- —— —— ---- — -- — — —-------Tantalum, Ta—-.------------------------Tantalum Silicide, TaSi2-.-.-------------Tellurium, _Te...........................Tellurium (IV)(tetragonal) -Tellurium (IV)(tetragonal) _oxide (paratellurite), TeO2oxide, paratellurite, TeO2Tellurium(IV) oxide tellurite, TeO2 (orthorhombic)______________________________Terbium arsenate, TbAsO 4______________Thallium aluminum sulfate dodecahydrate,T1A1(SO4) 2 -12H 2CL____________ _________Thallium (I) arsenate, Tl3AsO4---__ ______ __Thallium (I) bromate, TlBr03 _ - ._______-_-Thallium bromide, TlBr__________________Thallium (I) chlorate, TICIQs—-----------Thallium (I) chloride, T1CL__ _____________Thallium chloroplatinate, Tl2 PtC1 6_-_______Thallium chlorostannate, Tl 2SnCle_ ________Thallium chromate, Tl 2CrO4 ______-_____--Thallium chromium sulfate dodecahydrate,TlCr(SO 4) 2 .12H 2O_-_--_____ _____!_____Thallium fluosilicate, Tl2SiF6-__________-_Thallium gallium sulfate dodecahydrate,TlGa(S04) 2 -12H 20____._.______________ThaUium(I) iodate, T1IO3 _ _______________Thallium(I) iodide, Til (orthorhombic).—_Thallium (I) nitrate, T1N08--------------Thallium(III) oxide, TIA—-------____--Thallium (I) perchlorate, T1C1O 4 __ _________Thallium (I) phosphate, T13PO4____________Thallium(III) phosphate, T1PO4—--------Thallium (I) sulfate, T1 2S04 _ ______________Thallium (I) thiocyanate, T1CNS_ .______._m-Monograph 25Vol. or Vol. orsac. Page sec. Page3m 53 Thallium(I) tungstate, T12WO4—........._ 1m 484 60 Thorium oxide (thorianite), ThO 2________ 1 573 56 Thulium arsenate, TmAs0 4 - __--__-______- 3m 564 40 Thulium sesquioxide, Tm 2O3______________ 9 584 58 Tin, alpha, Sn (cubic).___________________ 2 125 67 Tin, beta, Sn (tetragonal) ________________ 1 248 55 Tin(IV) iodide, SnI 4_.___________________ 5 71Tin(II) oxide, SnO_ _____________________ 4 288 56 Tin (IV) oxide (cassiterite), SnO 2__._______ 1 548 58 Tin(II) telluride, SnTe_____._______„___.- 7 617 50 Titanium, Ti___._______„_..__.__._____ 3 11 80 Titanium dioxide (anatase), TiO 2 (tetra-5 68 gonal) ——.... ______-__„-_____-_____-_ 1 466 52 Titanium dioxide, brookite, TiO2 (ortho-2 61 rhombic)_.______.„___._.._._________ 3m 577 52 Titanium dioxide (rutile), Ti02 (tetragonal). 1 443 44 Titanium(III) oxide, TiOi.sw--.— .__-.---- 9 597 53 Titanium silicide, Ti5Si3 __-____-__.______-. 8 649 51 Tungsten, W—_________________________ 1 287 54 Tungsten sulfide (tungstenite), WS2-_---- 8 659 54 Uranium dioxide (uraninite), U02 _ ________ 2 331 29 Urea, CO(NH 2) 2—--------------------- 7 618 59 Vanadium(V) oxide, V2 O5—-------------- 8 661 26 Ytterbium gallium oxide 3:5, Yb3 Ga 2 (GaO 4) 3 - 1m 49Yttrium arsenate, YAs0 4_________________ 2m 397 56 Yttrium gallium oxide 3:5, Y3Ga 2 (GaO4)s_-- 1m 50Yttrium, oxide, Y2 O3___________________ 3 2810 55 Yttrium oxychloride, YOCl______________ 1m 51Yttrium phosphate (xenotime), YPO4 _ m __._ 8 679 57 Zinc, Zn________________________________ 1 163m 54 Zinc aluminate (gahnite), ZnAl 2 O4 _ ________ 2 38Zinc borate, ZnB 2 O 4 _-------------------- 1 836 53 Zinc carbonate smithsonite, ZnC03 _ _______ 8 692m 37 Zinc cyanide, Zn(CN) 2—------_.-------- 5 738 60 Zinc, fluoride, ZnF2 _ _____________________ 6 607 57 Zinc fluosilicate hexahydrate, ZnSiF6-6H 2 O_ 8 708 61 Zinc germanate, Zn 2GeO4_________________ 10 564 51 Zinc iodide, Znl2-- — — -- — - —---------- 9 605 70 Zinc orthosilicate (willemite), Zn 2SiO4 ____ __ 7 626 54 Zinc oxide (zincite), ZnO_________________ 2 253m 54 Zinc pyrosilicate hydrate, hemimorphite,Zn 4 (OH) 2Si2 O7-H2b-___________________ 2 626 55 Zinc selenide, ZnSe. _____________________ 3 236 56 Zinc sulfate (zinkosite), ZnS04_----------- 7 64Zinc sulfate heptahydrate (goslarite),6 57 ZnSCV7H 20_________________ _________ 8 718 62 Zinc sulfide, (wurtzite), alpha ZnS (hexag-4 53 onal)________,________________________ 2 146 58 Zinc sulfide, (sphalerite), beta ZnS (cubic)__ 2 162 28 Zinc telluride, ZnTe_ ____________________ 3m 582m 38 Zinc tungstate, (sanmartinite), ZnWO 4_____ 2m 407 58 Zirconium, alpha, Zr__,,_________________ 2 117 59 Zirconium iodate, Zr(IO3) 4________________ 1m 516 59 Zirconium silicate zircon, ZrSiO4_,_________ 4 688 63 Zirconium sulfate tetrahydrate,Zr(SO4) 2-4H2O ________________________ 7 66CUMULATIVE MINERAL INDEXAlabandite MnS_.-.__-__Alum, KAI(SO4) 242H 2O_Ammonia-niter, NH4NO3 _Anatase, TiO2.Andradite, Ca3Vol. orsec.46719Page113644622Anglesite, PbSO4 _.Anhydrite, CaSO4 _Aragonite, CaCOs-Argentite, Ag 2S--_.Arcanite, K2SO4 __.Vol. orsec. Page3 674 653 53516210363


CUMULATIVE MINERAL INDEX—ContinuedArsenolite, As203 _ _Aurostibite, AuSb 2-*Azurite, Cu3(OH) 2Barite, BaS04_____Berlinite, A1PO4*Beryl, Be3Al2 "Vol. orsec.17103109Bismite, (alpha) Bi 203____.________________ 3mBismoclite, BiOCL_ ____________________Bismuthinite, Bi 2S 3 _ _____________________Bohmite, A12O3-H 2O_____________________Bromellite, BeO_________________________Bromyrite, AgBr___-__-_____-___.___-_-.Brucite, Mff(pH) 2__. ...... ____...._.--..-Bunsenite, NiO_ ________________________Calcite, CaCOs— -----------------------Calomel, Hg3Cla— -----------------------Cassiterite, SnO2 _ __-___-_-.-___-_---.-----Celestite, SrS04 _____________________-___Cerargyrite, AgCL _ _ _ . __________________Cerianite, Ce0 2 _ ___________-_____-_----_Cerrussite, PbCO3 __ _____________________Cervantite, Sb 2O 4___-_______-__-_-_-____~443143m61211241210Chalcocyanite, CuS04 —-....------------- 3mChloraluminite, A1C13 - 6H 2O_ _____________ 7Chrysoberyl, BeAl204. ................... 9Cinnabar, HgS______________ ____________ 4*Claudetite, As203._. .................... 3mClausthalite, PbSe_____ __________________ 5Cordierite, Mg2Al4Si5Oi 8 (orthorhombic) _ _ _ _ 1mCordierite, Mg2 ALjSisOur (hexagonal) _______ 1mCorundum, A1 20 3----. _-...-.----.------- 9Cotunnite, PbQ2_. .____.._.____-..._---- 2Coyellite, CuS_ _________________________ 4Cristobalite, (alpha or low) SiO 2 (revised) _ _ . . 10Cristobalite, (bet a or high) SiO 2_____ _______ 1Cryptohalite, (NH 4) aSiFe. -____________--- 5Cuprite, Cu20-.._____ ____________________ 2* Diamond , C ____________________________ 2*Diaspore, A1203 *H 20___ ______________.,-- 3*Dravite, NaMgsAl«B8SiflO27 (OH) 4 .._..._.- 3m*Enstatite, MgSi03 _ ..................... 6Epsomite, MgS0 4 -7H 20____ ______________ 7Eschynite, CeNbTiOe. ................... 3mEttringite,Fluoroapatite, Ca5F(P04)3~ .........Fluorite, CaF2 _ ___________________Forsterite, Mg2Si04 > ...............Galaxite, Mn A1 20 4__ _ ______________Galena, PbS_ ............... ......Gahnite, ZnAl204-_____,___^_______Geikielite, MgTiO 3 _ ___„_.._______.Gersdorffite, NiAsS. ...............Goslarite, ZnS04 -7H 2O-_ ...........Greenockite. CdS _ _ ______________Halite, NaCl.......... ............*Hemimorphite, Zn 4(OH) 2 Si 207 - H 2O.Hieratite, K2SiF6 _83m1192251m84225Huebnerite, MnWO4_----_-_-___-____-___ 2mHumite, 3Mg 2Si0 4.MgF 3___.______________ 1mlodyrite, Agl___________________________ 8Jacobsite, MnFe20 4______________________ 9Litharge, PbO (red)_ ____________________ 2Lithipphosphate, Li 3PO4_____>___„_____„__ 3mLoellingite, FeAs2— _._______---________-. 10Magnesite, MgCO3 ___„_____._„_______„__ 7Malachite, Cu 2(OH) 2C03 ____-________-_-_ 10Manganosite, MnO_ ____________ _..._. 5Marshite, CuI--.______________________. 4Mascagnite, (NH4) 2SO4 (revised).________ 9* Natural mineral,m—Monograph 26.Vol. orsec.51 Massicot, PbO (yellow)__________________ 218 Matlockite, PbFCl__ _._.__.__._.____„___ 130 Metacinnabar, HgS_____^_-______________ 465 *Millerite, NiS.......................... 1m3 Minium, Pb30 4_____________813 Molybdenite, MoS 2_________517 Molybdite, Mo03___._...._..354 Montroydite, HgO (revised).923 Mullite, 3A1 2O3 - 2Si02 _ ______3m38 Nantokite, CuCl___________436 Niter, KNO8...............346 Nitrobarite, Ba(NO3) 2_.-_.157 Norbergite, Mg 2Si04 - MgF 2 _ _1030 Oldhamite, CaS__________-.747 Otavite, CdCO3 _ ___________751 Oxammite, (NH4 ) 2 C 2O4 - H 20_772 *Paratellurite, TeO2 _ _______1054 Paratellurite, Te0 2 _ ________761 Partridgeite, Mn 203_____.._.944 Periclase, MgO_____________156 *Phenacite, 6628104_______8568 Picrochromite, MgCr20 4_____9Portlandite, Ca(OH) 2 _ ______129 Powellite, CaMo04 _ ________63 Pyhte, FeS 2_..............510 *Quartz, Si0 2 (alpha or low).317 Rammelsbergite, NiAs 2-109 Retgersite, NiSO4 -6H 20-___-_738 Rhodochrosite, MnC03___-_.728 Rutile, Ti0 2 ._.____________129 SaflFlorite, CoFeAs 4 _ ________103 Sal-ammoniac, NH 4CL______145 Sanmartinite, ZnW0 4 ___.-__.2m13 *Scheelite, CaWO4__________648 Selenolite, Se0 2 _ ___________1425 Sellaite, MgF 2 _ ____________4Senarmontite, Sb 2 O3 _ _______323 Skutterudite, CoAs 3 _ _______105 *Smithsonite, ZnCO3______841 Soda-niter, NaN03 _ ________647 Sphalerite, ZnS_ ___________232 Spherocobaltite, CoCO3 _____1030 Spinel, MgAl 204____________2243 Stibnite, Sb 2 S 3 _ ____________5Stolzite, PbW0 4-_.........722 Strontianite, SrCO3 _369 Struvite, MgNH 4P04 - 6H 20_3m83 Sylvite, KC1_.............135 *Tellurite, Te02.918 Tellurobismuthite, Bi2Te3_________________ 3m38 Tenorite, CuCL43 Teschemacherite, NH 4HCO 3________935 Teschermigite, NH 4A1(SO4 ) 2 - 12H 2 O_62871 Thenardite, Na2SO4_______________15 Thermonatrite, Na2C03 - H2O_______41 Thorianite, Th02 _________________162 Tiemannite, HgSe________________750 *Topaz, Al2SiO 4 (F,OH) 2 ___________1m24 Trevorite, NiFe204______________1030 Tungstenite, WS 2_ ______________51 Uraninite, UO2___________________236 Uvarovite, Ca 3Cr2 (SiO4) 3 _ _________1030 *Valentinite, Sb203 _______________38 Villiaumite, NaF_________________34 Willemite, Zn 2Si04________________28 Witherite, BaCO3____.____________31 Wulfenite, PbMoG 4_______________45 Wurtzite, ZnS____________________38 Xenotime, YPO4 . ________________8 Zincite, ZnO____________________Zinkosite, ZnSO4 _________________*Zircon, ZrSi0 4.......____________Page327621373247303933558813915115555637371134582229244236324428594023533331216950162435624564165571649535954573544465331761017272827463625423146725646864U. S. GOVERNMENT PRINTING OFFICE : 1964 O - 728-345

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!