12.07.2015 Views

Download Thesis in Pdf Format - Theoretical Nuclear Physics and ...

Download Thesis in Pdf Format - Theoretical Nuclear Physics and ...

Download Thesis in Pdf Format - Theoretical Nuclear Physics and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 2. Relativistic Eikonal A(p, pN) Formalism 15so that the RPWIA differential A(p, 2p) cross section of Eq. (2.2) can be written <strong>in</strong> the crosssectionfactorized form(d 5 ) RPWIAσ≈ sM A−1 k 1 k 2f −1 2j + 1recdE k1 dΩ 1 dΩ 2 M p M A p 1 4πHere, s is the M<strong>and</strong>elstam variable for the pp scatter<strong>in</strong>g.(dσ pNdΩ( )|˜α nκ (p m )| 2 dσppdΩc.m.. (2.30)In)the numerical calculations presented <strong>in</strong> Chapter 3, the free proton-nucleon cross sectionis obta<strong>in</strong>ed from the SAID code [12, 13] at an effective laboratory k<strong>in</strong>etic energy ofc.m.T efflab = s − 4M 2 p2M p(2.31)<strong>and</strong> a c.m. scatter<strong>in</strong>g angle θ c.m. given bycos θ c.m. =t − u√ (s− 4M 2 p) [ (4M 2 p −t−u) 2s− 4M 2 p] , (2.32)with s, t, <strong>and</strong> u the M<strong>and</strong>elstam variables for the pp scatter<strong>in</strong>g. For the nuclear transparencycalculations of Chapter 4, the phenomenological parametrization of Ref. [67], which is moresuitable at large s (s ≥ 7 GeV 2 ) <strong>and</strong> c.m. scatter<strong>in</strong>g angle θ c.m. ≈ 90 ◦ , is used (see Eq. (4.8)).2.1.3 Treatment of the IFSI: Factorization Assumption <strong>and</strong> the Distorted MomentumDistributionThe factorized RPWIA result of Eq. (2.30) adopts an oversimplified description of the reactionmechanism. The momentum distribution 2j+14π|˜α nκ (p m )| 2 , which represents the probability off<strong>in</strong>d<strong>in</strong>g a proton <strong>in</strong> the target nucleus with miss<strong>in</strong>g momentum ⃗p m , is modified by the scatter<strong>in</strong>gsof the <strong>in</strong>com<strong>in</strong>g <strong>and</strong> outgo<strong>in</strong>g protons <strong>in</strong> the nucleus. Therefore, it is necessary to <strong>in</strong>corporatethe effects of these IFSI <strong>in</strong> the model.In this section, the differential A(p, 2p) cross section is written <strong>in</strong> a factorized form tak<strong>in</strong>gIFSI effects <strong>in</strong>to account. The relativistic eikonal methods used for deal<strong>in</strong>g with the IFSI effectswill be discussed <strong>in</strong> depth <strong>in</strong> the forthcom<strong>in</strong>g sections. Two methods will be used. The relativisticoptical model eikonal approximation (ROMEA) is the subject of Section 2.2, whereas therelativistic multiple-scatter<strong>in</strong>g Glauber approximation (RMSGA) is discussed <strong>in</strong> Section 2.3.In both versions of the relativistic eikonal framework for A(p, pN) reactions (ROMEA <strong>and</strong>RMSGA), the antisymmetrized <strong>in</strong>itial- <strong>and</strong> f<strong>in</strong>al-state (A + 1)-body wave functions,Ψ ⃗p 1,m s1i ,gsA+1(⃗r 0 , ⃗r 1 , . . . , ⃗r A )[= ÂŜ p1 (⃗r 0 , ⃗r 2 , . . . , ⃗r A ) e i⃗p 1·⃗r 0u(⃗p 1 , m s1i ) Ψ gsA (⃗r 1, ⃗r 2 , . . . , ⃗r A )](2.33)<strong>and</strong>Ψ ⃗ k 1 ,m s1f , ⃗ k 2 ,m s2fA+1(⃗r 0 , ⃗r 1 , . . . , ⃗r A ) = Â[Ŝ † k1 (⃗r 0, ⃗r 2 , . . . , ⃗r A ) e i⃗ k 1·⃗r 0u( ⃗ k 1 , m s1f )× Ŝ† k2 (⃗r 1, ⃗r 2 , . . . , ⃗r A ) e i⃗ k 2·⃗r 1u( ⃗ k 2 , m s2f ) Ψ J R M RA−1(⃗r 2 , . . . , ⃗r A )], (2.34)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!