08.07.2017 Views

Calculus 2nd Edition Rogawski

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

988 C H A P T E R 17 LINE AND SURFACE INTEGRALS<br />

REMINDER In this example,<br />

G(θ,t)= (t cos θ,tsin θ,t)<br />

Step 1. Compute the tangent and normal vectors.<br />

T θ = ∂G = ⟨−t sin θ,tcos θ, 0⟩ ,<br />

∂θ T t = ∂G = ⟨cos θ, sin θ, 1⟩<br />

∂t<br />

i j k<br />

n = T θ × T t =<br />

−t sin θ t cos θ 0<br />

= t cos θi + t sin θj − tk<br />

∣ cos θ sin θ 1 ∣<br />

The normal vector has length<br />

√<br />

√<br />

∥n∥ = t 2 cos 2 θ + t 2 sin 2 θ + (−t) 2 = 2t 2 = √ 2 |t|<br />

Thus, dS = √ 2|t| dθ dt. Since t ≥ 0 on our domain, we drop the absolute value.<br />

Step 2. Calculate the surface area.<br />

∫∫<br />

∫ 2 ∫ 2π<br />

√ √ 2<br />

Area(S) = ∥n∥ dudv = 2 tdθ dt = 2πt<br />

2<br />

∣ = 4 √ 2π<br />

D<br />

0 0<br />

0<br />

Step 3. Calculate the surface integral.<br />

We express f (x, y, z) = x 2 z in terms of the parameters t and θ and evaluate:<br />

∫ 2π<br />

0<br />

REMINDER<br />

cos 2 θ dθ =<br />

∫ 2π<br />

0<br />

1 + cos 2θ<br />

2<br />

dθ = π<br />

f (G(θ, t)) = f (t cos θ,tsin θ,t)= (t cos θ) 2 t = t 3 cos 2 θ<br />

∫∫<br />

∫ 2 ∫ 2π<br />

f (x, y, z) dS = f (G(θ, t)) ∥n(θ,t)∥ dθ dt<br />

S<br />

t=0 θ=0<br />

=<br />

∫ 2<br />

t=0<br />

∫ 2π<br />

θ=0<br />

(t 3 cos 2 θ)( √ 2t)dθ dt<br />

= √ ( ∫ )(<br />

2 ∫ )<br />

2π<br />

2 t 4 dt cos 2 θ dθ<br />

= √ 2<br />

0<br />

( 32<br />

5<br />

0<br />

)<br />

(π) = 32√ 2π<br />

5<br />

In previous discussions of multiple and line integrals, we applied the principle that<br />

the integral of a density is the total quantity. This applies to surface integrals as well. For<br />

example, a surface with mass density ρ(x, y, z) [in units of mass per area] is the surface<br />

integral of the mass density:<br />

∫∫<br />

Mass of S = ρ(x, y, z) dS<br />

S<br />

Similarly, if an electric charge is distributed over S with charge density ρ(x, y, z), then<br />

the surface integral of ρ(x, y, z) is the total charge on S.<br />

EXAMPLE 5 Total Charge on a Surface Find the total charge (in coulombs) on a<br />

sphere S of radius 5 cm whose charge density in spherical coordinates is ρ(θ, φ) =<br />

0.003 cos 2 φ C/cm 2 .<br />

Solution We parametrize S in spherical coordinates:<br />

G(θ, φ) = (5 cos θ sin φ, 5 sin θ sin φ, 5 cos φ)<br />

By Eq. (2), ∥n∥ = 5 2 sin φ and<br />

∫∫<br />

Total charge =<br />

S<br />

ρ(θ, φ)dS =<br />

∫ 2π ∫ π<br />

θ=0<br />

φ=0<br />

ρ(θ, φ)∥n∥ dφ dθ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!