08.07.2017 Views

Calculus 2nd Edition Rogawski

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SECTION 8.2 Trigonometric Integrals 425<br />

In Exercises 15–18, evaluate the integral using the method described<br />

on page 422 and the reduction formulas on page 423 as necessary.<br />

∫<br />

∫<br />

15. tan 3 x sec xdx 16. tan 2 x sec xdx<br />

∫<br />

17. tan 2 x sec 4 xdx 18.<br />

∫<br />

tan 8 x sec 2 xdx<br />

In Exercises 19–22, evaluate using methods similar to those that apply<br />

to integral tan m x sec n .<br />

∫<br />

∫<br />

19. cot 3 xdx 20. sec 3 xdx<br />

∫<br />

21. cot 5 x csc 2 xdx 22.<br />

∫<br />

cot 4 x csc xdx<br />

In Exercises 23–46, evaluate the integral.<br />

∫<br />

∫<br />

23. cos 5 x sin xdx 24. cos 3 (2 − x)sin(2 − x)dx<br />

∫<br />

∫<br />

25. cos 4 (3x + 2)dx 26. cos 7 3xdx<br />

∫<br />

∫<br />

27. cos 3 (πθ) sin 4 (πθ)dθ 28. cos 498 y sin 3 ydy<br />

∫<br />

∫<br />

29. sin 4 (3x)dx 30. sin 2 x cos 6 xdx<br />

31.<br />

∫<br />

∫<br />

csc 2 (3 − 2x)dx 32. csc 3 xdx<br />

∫<br />

∫<br />

33. tan x sec 2 xdx 34. tan 3 θ sec 3 θ dθ<br />

∫<br />

∫<br />

35. tan 5 x sec 4 xdx 36. tan 4 x sec xdx<br />

∫<br />

∫<br />

37. tan 6 x sec 4 xdx 38. tan 2 x sec 3 xdx<br />

∫<br />

∫<br />

39. cot 5 x csc 5 xdx 40. cot 2 x csc 4 xdx<br />

∫<br />

∫<br />

41. sin 2x cos 2xdx 42. cos 4x cos 6xdx<br />

∫<br />

∫<br />

43. t cos 3 (t 2 tan 3 (ln t)<br />

)dt 44.<br />

dt<br />

t<br />

∫<br />

∫<br />

45. cos 2 (sin t)cos tdt 46. e x tan 2 (e x )dx<br />

In Exercises 47–60, evaluate the definite integral.<br />

∫ 2π<br />

∫ π/2<br />

47. sin 2 xdx 48. cos 3 xdx<br />

0<br />

0<br />

∫ π/2<br />

∫ π/2<br />

49. sin 5 xdx 50. sin 2 x cos 3 xdx<br />

0<br />

0<br />

∫ π/4<br />

∫<br />

dx<br />

π/2 dx<br />

51.<br />

52.<br />

0 cos x<br />

π/4 sin x<br />

∫ π/3<br />

∫ π/4<br />

53. tan xdx 54. tan 5 xdx<br />

0<br />

0<br />

∫ π/4<br />

∫ 3π/2<br />

55. sec 4 xdx 56. cot 4 x csc 2 xdx<br />

−π/4<br />

π/4<br />

∫ π<br />

∫ π<br />

57. sin 3x cos 4xdx 58. sin x sin 3xdx<br />

0<br />

0<br />

∫ π/6<br />

∫ π/4<br />

59. sin 2x cos 4xdx 60. sin 7x cos 2xdx<br />

0<br />

0<br />

61. Use the identities for sin 2x and cos 2x on page 420 to verify that<br />

the following formulas are equivalent.<br />

∫<br />

sin 4 xdx= 1 (12x − 8 sin 2x + sin 4x) + C<br />

32<br />

∫<br />

sin 4 xdx= − 1 4 sin3 x cos x − 3 8 sin x cos x + 3 8 x + C<br />

62. Evaluate ∫ sin 2 x cos 3 xdxusing the method described in the text<br />

and verify that your result is equivalent to the following result produced<br />

by a computer algebra system.<br />

∫<br />

sin 2 x cos 3 xdx= 1 30 (7 + 3 cos 2x)sin3 x + C<br />

63. Find the volume of the solid obtained by revolving y = sin x for<br />

0 ≤ x ≤ π about the x-axis.<br />

64. Use Integration by Parts to prove Eqs. (1) and (2).<br />

In Exercises 65–68, use the following alternative method for evaluating<br />

the integral J = ∫ sin m x cos n xdxwhen m and n are both even. Use<br />

the identities<br />

sin 2 x = 1 2 (1 − cos 2x), cos2 x = 1 (1 + cos 2x)<br />

2<br />

to write J = 1 ∫<br />

4 (1 − cos 2x) m/2 (1 + cos 2x) n/2 dx, and expand the<br />

right-hand side as a sum of integrals involving smaller powers of sine<br />

and cosine in the variable 2x.<br />

∫<br />

∫<br />

65. sin 2 x cos 2 xdx 66. cos 4 xdx<br />

∫<br />

∫<br />

67. sin 4 x cos 2 xdx 68. sin 6 xdx<br />

69. Prove the reduction formula<br />

∫<br />

tan k xdx= tank−1 ∫<br />

x<br />

−<br />

k − 1<br />

tan k−2 xdx<br />

Hint: tan k x = (sec 2 x − 1) tan k−2 x.<br />

∫<br />

70. Use the substitution u = csc x − cot x to evaluate csc xdx(see<br />

Example 5).<br />

∫ π/2<br />

71. Let I m = sin m xdx.<br />

0<br />

(a) Show that I 0 = π 2 and I 1 = 1.<br />

(b) Prove that, for m ≥ 2,<br />

I m = m − 1<br />

m<br />

I m−2<br />

(c) Use (a) and (b) to compute I m for m = 2, 3, 4, 5.<br />

∫ π<br />

72. Evaluate sin 2 mx dx for m an arbitrary integer.<br />

∫ 0<br />

73. Evaluate sin x ln(sin x)dx. Hint: Use Integration by Parts as a<br />

first step.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!