08.07.2017 Views

Calculus 2nd Edition Rogawski

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ANSWERS TO ODD-NUMBERED EXERCISES<br />

A85<br />

Section 8.8 Preliminary Questions<br />

1. T 1 = 6; T 2 = 7<br />

3. The Trapezoidal Rule integrates linear functions exactly, so the<br />

error will be zero.<br />

5. The two graphical interpretations of the Midpoint Rule are the<br />

sum of the areas of the midpoint rectangles and the sum of the areas<br />

of the tangential trapezoids.<br />

Section 8.8 Exercises<br />

1. T 4 = 2.75; M 4 = 2.625<br />

3. T 6 = 64.6875; M 6 ≈ 63.2813<br />

5. T 6 ≈ 1.4054; M 6 ≈ 1.3769<br />

7. T 6 = 1.1703; M 6 = 1.2063<br />

9. T 4 ≈ 0.3846; M 5 ≈ 0.3871<br />

11. T 5 = 1.4807; M 5 = 1.4537<br />

13. S 4 ≈ 5.2522 15. S 6 ≈ 1.1090 17. S 4 ≈ 0.7469<br />

19. S 8 ≈ 2.5450 21. S 1 0 ≈ 0.3466 23. ≈ 2.4674<br />

25. ≈ 1.8769 27. ≈ 608.611<br />

29. (a) Assuming the speed of the tsunami is a continuous function,<br />

at x miles from the shore, the speed is √ 15f (x). Covering an<br />

infinitesimally small distance, dx, the time T required for the tsunami<br />

dx<br />

to cover that distance becomes √ . It follows from this that<br />

15f (x)<br />

T = ∫ M<br />

0<br />

dx √ 15f (x)<br />

.<br />

(b) ≈ 3.347 hours.<br />

31. (a) Since x 3 is concave up on [0, 2], T 6 is too large.<br />

(b) We have f ′ (x) = 3x 2 and f ′′ (x) = 6x. Since |f ′′ (x)| =|6x| is<br />

increasing on [0, 2], its maximum value occurs at x = 2 and we may<br />

take K 2 =|f ′′ (2)| =12. Thus, Error(T 6 ) ≤ 2 9 .<br />

(c) Error(T 6 ) ≈ 0.1111 < 2 9<br />

33. T 1 0 will overestimate the integral. Error(T 10 ) ≤ 0.045.<br />

35. M 1 0 will overestimate the integral. Error(M 10 ) ≤ 0.0113<br />

37. N ≥ 10 3 ; Error ≈ 3.333 × 10 −7<br />

39. N ≥ 750; Error ≈ 2.805 × 10 −7<br />

41. Error(T 10 ) ≤ 0.0225; Error(M 10 ) ≤ 0.01125<br />

43. S 8 ≈ 4.0467; N ≥ 23<br />

45. Error(S 40 ) ≤ 1.017 × 10 −4 .<br />

47. N ≥ 305 49. N ≥ 186<br />

51. (a) The maximum value of |f (4) (x)| on the interval [0, 1] is 24.<br />

(b) N ≥ 20; S 20 ≈ 0.785398; |0.785398 − π 4 | ≈ 1.55 × 10−10 .<br />

53. (a) Notice |f ′′ (x)| =|2 cos(x 2 ) − 4x 2 sin(x 2 )|; proof follows.<br />

(b) When K 2 = 2, Error(M N ) ≤ 1<br />

4N 2 .<br />

(c) N ≥ 16<br />

55. Error(T 4 ) ≈ 0.1039; Error(T 8 ) ≈ 0.0258; Error(T 16 ) ≈ 0.0064;<br />

Error(T 32 ) ≈ 0.0016; Error(T 64 ) ≈ 0.0004. Thes are about twice as<br />

large as the error in M N .<br />

57. S 2 = 1 4 . This is the exact value of the integral.<br />

59. T N = r(b2 − a 2 ∫<br />

)<br />

b<br />

+ s(b − a) = f (x) dx<br />

2<br />

a<br />

61. (a) This result follows because the even-numbered interior<br />

endpoints overlap:<br />

(N−2)/2 ∑<br />

i=0<br />

= b − a<br />

6<br />

S 2j<br />

2 = b − a [(y 0 + 4y 1 + y 2 ) + (y 2 + 4y 3 + y 4 ) +···]<br />

6<br />

[<br />

y0 + 4y 1 + 2y 2 + 4y 3 + 2y 4 +···+4y N−1 + y N<br />

]<br />

= SN .<br />

(b) If f (x) is a quadratic polynomial, then by part (a) we have<br />

∫ b<br />

S N = S2 0 + S2 2 +···+SN−2 2 = f (x) dx.<br />

a<br />

63. Let f (x) = ax 3 + bx 2 + cx + d, with a ̸= 0, be any cubic<br />

polynomial. Then, f (4) (x) = 0, so we can take K 4 = 0. This yields<br />

Error(S N ) ≤ 0<br />

180N 4 = 0. In other words, S N is exact for all cubic<br />

polynomials for all N.<br />

Chapter 8 Review<br />

1. (a) (v) (b) (iv) (c) (iii) (d) (i) (e) (ii)<br />

3.<br />

sin 9 θ<br />

9 − sin11 θ<br />

11 + C.<br />

5.<br />

tan θsec 5 θ<br />

6 − 7 tan θsec3 θ<br />

24 +<br />

tan θ sec θ<br />

16 + 16 1 ln | sec θ + tan θ|+C<br />

7. − √ 1 − x 2 −1 sec−1 x + C 9. 2tan −1√ x + C<br />

11. − tan−1 x<br />

x + ln |x| − 1 2 ln (1 + x 2) + C.<br />

13.<br />

5<br />

32 e4 − 32 1 ≈ 8.50 15. cos 12 6θ<br />

72 − cos10 6θ<br />

60 + C<br />

17. 5ln|x − 1|+ln |x + 1|+C<br />

19.<br />

tan 3 θ<br />

3 + tan θ + C 21. ≈ 1.0794<br />

23. − cos5 θ<br />

5 + 2cos3 θ<br />

3 − cos θ + C 25. − 1 4<br />

27.<br />

2<br />

3 (tan x)3/2 + C<br />

29.<br />

sin 6 θ<br />

6 − sin8 θ<br />

8 + C 31. − 1 3 u3 + C = − 1 3 cot3 x + C<br />

∣ 33. ≈ 0.4202 35.<br />

1 ∣∣<br />

49 ln t+4<br />

t−3 ∣ − 1 7 · 1<br />

t−3 + C<br />

37.<br />

1<br />

2 sec−1 x 2 + C<br />

√a 2<br />

tan<br />

∫<br />

⎧⎪ −1√ x<br />

a + C a > 0<br />

dx ⎨ √ √ ∣<br />

39.<br />

x 3/2 + ax 1/2 = √1<br />

x− −a<br />

ln −a<br />

∣ √ √ ∣∣ + C a < 0<br />

x+ −a<br />

⎪ ⎩<br />

− 2 √ x<br />

+ C a = 0<br />

41. ln |x + 2|+ x+2 5 − 3<br />

(x+2) 2 + C<br />

)<br />

43. − ln |x − 2| − 2 x−2 1 + 1 2<br />

(x ln 2<br />

( + 4 + C<br />

)<br />

45.<br />

1<br />

3 tan−1 x+4<br />

3 + C 47. ln |x + 2|+ x+2 5 − 3<br />

(x+2) 2 + C<br />

(<br />

x<br />

49. −<br />

2 +4 ) 3/2 √<br />

48x 3 + x 2 +4<br />

16x + C 51. − 1 9 e4−3x (3x + 4) + C<br />

53.<br />

1<br />

2 x2 sin x 2 + 1 2 cos x2 + C<br />

∣ 55.<br />

x 2<br />

2 tanh−1 x + x 2 − 1 ∣∣<br />

4 ln 1+x<br />

1−x ∣ + C<br />

( )<br />

57. x ln x 2 + 9 − 2x + 6tan −1 ( x )<br />

3 + C<br />

59.<br />

1<br />

2 sinh 2 61. t + 1 4 coth(1 − 4t) + C 63. π<br />

3<br />

65. tan −1 (tanh x) + C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!