08.07.2017 Views

Calculus 2nd Edition Rogawski

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

APPENDIX C INDUCTION AND THE BINOMIAL THEOREM A15<br />

( ( n n<br />

= = 1. In summation notation,<br />

0)<br />

n)<br />

(a + b) n =<br />

n∑<br />

k=0<br />

( n<br />

k)<br />

a k b n−k<br />

Pascal’s Triangle (described in the marginal note on page A14) can be used to compute<br />

binomial coefficients if n and k are not too large. The Binomial Theorem provides the<br />

following general formula:<br />

( n n! n(n − 1)(n − 2) ···(n − k + 1)<br />

=<br />

=<br />

k)<br />

k! (n − k)! k(k − 1)(k − 2) ···2 · 1<br />

Before proving this formula, we prove a recursion relation for binomial coefficients. Note,<br />

however, that Eq. (3) is certainly correct for k = 0 and k = n (recall that by convention,<br />

0! =1):<br />

( n<br />

=<br />

0)<br />

n!<br />

(n − 0)! 0! = n! ( ) n<br />

n! = 1, =<br />

n<br />

n!<br />

(n − n)! n! = n!<br />

n! = 1<br />

3<br />

THEOREM2 Recursion Relation for Binomial Coefficients<br />

( ( n n − 1<br />

=<br />

k)<br />

k<br />

)<br />

+<br />

( ) n − 1<br />

k − 1<br />

for 1 ≤ k ≤ n − 1<br />

Proof We write (a + b) n as (a + b)(a + b) n−1 and expand in terms of binomial coefficients:<br />

(a + b) n = (a + b)(a + b) n−1<br />

n∑<br />

( n ∑n−1<br />

( ) n − 1<br />

a<br />

k)<br />

n−k b k = (a + b)<br />

a n−1−k b k<br />

k<br />

k=0<br />

k=0<br />

∑n−1<br />

( ) n − 1<br />

∑n−1<br />

( ) n − 1<br />

= a<br />

a n−1−k b k + b<br />

a n−1−k b k<br />

k<br />

k<br />

k=0<br />

k=0<br />

∑n−1<br />

( ) n − 1 ∑n−1<br />

( ) n − 1<br />

=<br />

a n−k b k +<br />

a n−(k+1) b k+1<br />

k<br />

k<br />

k=0<br />

Replacing k by k − 1 in the second sum, we obtain<br />

k=0<br />

n∑<br />

k=0<br />

( n<br />

k)<br />

a n−k b k =<br />

∑n−1<br />

( n − 1<br />

k=0<br />

k<br />

k=0<br />

)<br />

a n−k b k +<br />

n∑<br />

k=1<br />

( ) n − 1<br />

a n−k b k<br />

k − 1<br />

On the right-hand side, the first term in the first sum is a n and the last term in the second<br />

sum is b n . Thus, we have<br />

n∑<br />

( (<br />

n ∑n−1<br />

(( ) ( )) )<br />

n − 1 n − 1<br />

a<br />

k)<br />

n−k b k = a n +<br />

+ a n−k b k + b n<br />

k k − 1<br />

k=1<br />

The recursion relation follows because the coefficients of a n−k b k on the two sides of the<br />

equation must be equal.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!