08.07.2017 Views

Calculus 2nd Edition Rogawski

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

942 C H A P T E R 16 MULTIPLE INTEGRATION<br />

∫∫<br />

24. Evaluate xdA, where D is the shaded domain in Figure 2.<br />

D<br />

2<br />

y<br />

r = 2(1 + cos θ)<br />

D<br />

∫∫<br />

33. Use polar coordinates to calculate<br />

D<br />

√<br />

x 2 + y 2 dA, where D is<br />

the region in the first quadrant bounded by the spiral r = θ, the circle<br />

r = 1, and the x-axis.<br />

∫∫<br />

34. Calculate sin(x 2 + y 2 )dA, where<br />

D<br />

{ π<br />

D =<br />

2 ≤ x2 + y 2 ≤ π}<br />

2 4<br />

FIGURE 2<br />

x<br />

35. Express in cylindrical coordinates and evaluate:<br />

∫ 1 ∫ √ 1−x 2 ∫ √ x 2 +y 2<br />

zdzdydx<br />

0 0 0<br />

25. Find the volume of the region between the graph of the function<br />

f (x, y) = 1 − (x 2 + y 2 ) and the xy-plane.<br />

∫ 3 ∫ 4 ∫ 4<br />

26. Evaluate (x 3 + y 2 + z) dx dy dz.<br />

0 1 2<br />

∫∫∫<br />

27. Calculate (xy + z) dV , where<br />

B<br />

B = { 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 1 ≤ z ≤ 3 }<br />

as an iterated integral in two different ways.<br />

∫∫∫<br />

28. Calculate xyz dV , where<br />

W<br />

W = { 0 ≤ x ≤ 1, x≤ y ≤ 1, x≤ z ≤ x + y }<br />

∫ 1 ∫ √ 1−x 2<br />

29. Evaluate I =<br />

−1 0<br />

∫ 1<br />

(x + y + z) dz dy dx.<br />

0<br />

30. Describe a region whose volume is equal to:<br />

∫ 2π ∫ π/2 ∫ 9<br />

(a)<br />

ρ 2 sin φ dρ dφ dθ<br />

0 0 4<br />

∫ 1 ∫ π/4 ∫ 2<br />

(b)<br />

rdrdθ dz<br />

−2 π/3 0<br />

∫ 2π ∫ 3 ∫ 0<br />

(c)<br />

√ rdzdrdθ<br />

0 0 − 9−r 2<br />

31. Find the volume of the solid contained in the cylinder x 2 + y 2 = 1<br />

below the curve z = (x + y) 2 and above the curve z = −(x − y) 2 .<br />

∫∫<br />

32. Use polar coordinates to evaluate xdA, where D is the shaded<br />

D<br />

region between the two circles of radius 1 in Figure 3.<br />

1<br />

y<br />

36. Use spherical coordinates to calculate the triple integral of<br />

f (x, y, z) = x 2 + y 2 + z 2 over the region<br />

1 ≤ x 2 + y 2 + z 2 ≤ 4<br />

37. Convert to spherical coordinates and evaluate:<br />

∫ 2 ∫ √ 4−x 2 ∫ √ 4−x 2 −y 2<br />

√ e −(x2 +y 2 +z 2 ) 3/2 dzdy dx<br />

−2 − 4−x 2 0<br />

38. Find the average value of f (x, y, z) = xy 2 z 3 on the box [0, 1] ×<br />

[0, 2] × [0, 3].<br />

39. Let W be the ball of radius R in R 3 centered at the origin, and let<br />

P = (0, 0,R)be the North Pole. Let d P (x, y, z) be the distance from<br />

P to (x, y, z). Show that the average value of d P over the sphere W is<br />

equal to d = 6R/5. Hint: Show that<br />

d = 1 ∫ 2π ∫ R ∫ π √<br />

ρ 2 sin φ R<br />

4<br />

2 + ρ 2 − 2ρR cos φ dφ dρ dθ<br />

3 πR3 θ=0 ρ=0 φ=0<br />

and evaluate.<br />

40. Express the average value of f (x, y) = e xy over the ellipse<br />

x2<br />

2 + y2 = 1 as an iterated integral, and evaluate numerically<br />

using a computer algebra system.<br />

41. Use cylindrical coordinates to find the mass of the solid bounded<br />

by z = 8 − x 2 − y 2 and z = x 2 + y 2 , assuming a mass density of<br />

f (x, y, z) = (x 2 + y 2 ) 1/2 .<br />

42. Let W be the portion of the half-cylinder x 2 + y 2 ≤ 4,x ≥ 0 such<br />

that 0 ≤ z ≤ 3y. Use cylindrical coordinates to compute the mass of<br />

W if the mass density is ρ(x, y, z) = z 2 .<br />

43. Use cylindrical coordinates to find the mass of a cylinder of radius<br />

4 and height 10 if the mass density at a point is equal to the square of<br />

the distance from the cylinder’s central axis.<br />

1<br />

x<br />

44. Find the centroid of the region W bounded, in spherical coordinates,<br />

by φ = φ 0 and the sphere ρ = R.<br />

FIGURE 3<br />

45. Find the centroid of the solid bounded by the xy-plane, the cylinder<br />

x 2 + y 2 = R 2 , and the plane x/R + z/H = 1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!