08.07.2017 Views

Calculus 2nd Edition Rogawski

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SECTION 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions 437<br />

Exercises<br />

In Exercises 1–16, calculate the integral.<br />

∫<br />

∫<br />

1. cosh(3x)dx 2. sinh(x + 1)dx<br />

∫<br />

∫<br />

3. x sinh(x 2 + 1)dx 4. sinh 2 x cosh xdx<br />

∫<br />

∫<br />

5. sech 2 (1 − 2x)dx 6. tanh(3x)sech(3x)dx<br />

∫<br />

∫<br />

7. tanh x sech 2 xdx 8.<br />

cosh x<br />

3 sinh x + 4 dx<br />

∫<br />

∫<br />

9. tanh xdx 10. x csch(x 2 ) coth(x 2 )dx<br />

∫<br />

∫ cosh x<br />

cosh x<br />

11.<br />

sinh x dx 12. sinh 2 x dx<br />

∫<br />

∫<br />

13. sinh 2 (4x − 9)dx 14. sinh 3 x cosh 6 xdx<br />

∫<br />

∫<br />

15. sinh 2 x cosh 2 xdx 16. tanh 3 xdx<br />

In Exercises 17–30, calculate the integral in terms of the inverse hyperbolic<br />

functions.<br />

∫<br />

∫<br />

dx<br />

dx<br />

17. √ 18. √<br />

x 2 − 1<br />

9x 2 − 4<br />

∫<br />

∫<br />

dx<br />

dx<br />

19. √ 20. √<br />

16 + 25x 2<br />

1 + 3x 2<br />

∫ √ ∫<br />

21. x 2 − 1 dx 22.<br />

∫ 1/2<br />

23.<br />

−1/2<br />

∫ 1<br />

25.<br />

0<br />

∫<br />

dx<br />

5<br />

1 − x 2 24.<br />

4<br />

∫ 10<br />

dx<br />

√<br />

1 + x 2<br />

26.<br />

Further Insights and Challenges<br />

41. Show that if u = tanh(x/2), then<br />

2<br />

x 2 dx<br />

√<br />

x 2 + 1<br />

dx<br />

1 − x 2<br />

dx<br />

4x 2 − 1<br />

cosh x = 1 + u2<br />

2u<br />

2du<br />

, sinh x = , dx =<br />

1 − u2 1 − u2 1 − u 2<br />

Hint: For the first relation, use the identities<br />

(<br />

sinh 2 x<br />

)<br />

2<br />

= 1 ( 2 (cosh x − 1), x<br />

)<br />

cosh2 = 1 (cosh x + 1)<br />

2 2<br />

Exercises 42 and 43: evaluate using the substitution of Exercise 41.<br />

∫<br />

∫<br />

dx<br />

42. sech xdx 43.<br />

1 + cosh x<br />

44. Suppose that y = f (x) satisfies y ′′ = y. Prove:<br />

(a) f (x) 2 − (f ′ (x)) 2 is constant.<br />

(b) If f(0) = f ′ (0) = 0, then f (x) is the zero function.<br />

∫ −1<br />

∫<br />

dx<br />

0.8<br />

27.<br />

−3 x √ dx<br />

28.<br />

x 2 + 16<br />

0.2 x √ 1 − x 2<br />

∫ √ x<br />

29.<br />

2 ∫<br />

− 1 dx<br />

9 dx<br />

x 2 30.<br />

1 x √ x 4 + 1<br />

31. Verify the formulas<br />

√<br />

sinh −1 x = ln |x + x 2 + 1|<br />

cosh −1 x = ln |x +<br />

√<br />

x 2 − 1| (for x ≥ 1)<br />

32. Verify that tanh −1 x = 1 ∣ ∣∣∣<br />

2 ln 1 + x<br />

1 − x ∣ for |x| < 1.<br />

∫ √<br />

33. Evaluate x 2 + 16 dx using trigonometric substitution. Then<br />

use Exercise 31 to verify that your answer agrees with the answer in<br />

Example 3.<br />

34. Evaluate<br />

∫ √<br />

x 2 − 9 dx in two ways: using trigonometric substitution<br />

and using hyperbolic substitution. Then use Exercise 31 to verify<br />

that the two answers agree.<br />

35. Prove the reduction formula for n ≥ 2:<br />

∫<br />

cosh n xdx= 1 n coshn−1 x sinh x + n − 1 ∫<br />

n<br />

cosh n−2 xdx 2<br />

∫<br />

36. Use Eq. (2) to evaluate cosh 4 xdx.<br />

In Exercises 37–40, evaluate the integral.<br />

∫ tanh −1 ∫<br />

xdx<br />

37.<br />

x 2 38. sinh −1 xdx<br />

− 1<br />

∫<br />

∫<br />

39. tanh −1 xdx 40. x tanh −1 xdx<br />

(c) f (x) = f(0) cosh x + f ′ (0) sinh x.<br />

Exercises 45–48 refer to the function gd(y) = tan −1 (sinh y), called<br />

the gudermannian. In a map of the earth constructed by Mercator projection,<br />

points located y radial units from the equator correspond to<br />

points on the globe of latitude gd(y).<br />

45. Prove that<br />

d<br />

gd(y) = sech y.<br />

dy<br />

46. Let f (y) = 2 tan −1 (e y ) − π/2. Prove that gd(y) = f (y). Hint:<br />

Show that gd ′ (y) = f ′ (y) and f(0) = g(0).<br />

47. Let t(y) = sinh −1 (tan y) Show that t(y) is the inverse of gd(y)<br />

for 0 ≤ y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!