08.07.2017 Views

Calculus 2nd Edition Rogawski

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SECTION 4.2 Extreme Values 191<br />

20. Compute the critical points of h(t) = (t 2 − 1) 1/3 . Check that your<br />

answer is consistent with Figure 17. Then find the extreme values of<br />

h(t) on [0, 1] and [0, 2].<br />

−2<br />

−1<br />

1<br />

−1<br />

h(t)<br />

1 2<br />

FIGURE 17 Graph of h(t) = (t 2 − 1) 1/3 .<br />

21. Plot f (x) = 2 √ x − x on [0, 4] and determine the maximum<br />

value graphically. Then verify your answer using calculus.<br />

22. Plot f (x) = 2x 3 − 9x 2 + 12x on [0, 3] and locate the extreme<br />

values graphically. Then verify your answer using calculus.<br />

23. Approximate the critical points of g(x) = x cos x on<br />

I =[0, 2π], and estimate the minimum value of g(x) on I.<br />

24. Approximate the critical points of g(x) = tan 2 x − 5x on<br />

I = ( − π 2 , π )<br />

2 , and estimate the minimum value of g(x) on I.<br />

In Exercises 25–50, find the min and max of the function on the given<br />

interval by comparing values at the critical points and endpoints.<br />

25. y = 2x 2 + 4x + 5, [−2, 2] 26. y = 2x 2 + 4x + 5, [0, 2]<br />

27. y = 6t − t 2 , [0, 5] 28. y = 6t − t 2 , [4, 6]<br />

29. y = x 3 − 6x 2 + 8, [1, 6]<br />

30. y = x 3 + x 2 − x, [−2, 2] 31. y = 2t 3 + 3t 2 , [1, 2]<br />

32. y = x 3 − 12x 2 + 21x, [0, 2] 33. y = z 5 − 80z, [−3, 3]<br />

34. y = 2x 5 + 5x 2 , [−2, 2] 35. y = x2 + 1<br />

, [5, 6]<br />

x − 4<br />

36. y = 1 − x<br />

4x<br />

x 2 , [1, 4] 37. y = x − , [0, 3]<br />

+ 3x x + 1<br />

38. y = 2 √ x 2 + 1 − x, [0, 2]<br />

39. y = (2 + x) √ 2 + (2 − x) 2 , [0, 2]<br />

40. y = √ 1 + x 2 − 2x, [0, 1]<br />

41. y = √ x + x 2 − 2 √ x, [0, 4]<br />

42. y = (t − t 2 ) 1/3 , [−1, 2] 43. y = sin x cos x,<br />

44. y = x + sin x, [0, 2π] 45. y = √ 2 θ − sec θ,<br />

t<br />

[<br />

0,<br />

π<br />

2<br />

]<br />

[<br />

0,<br />

π<br />

3<br />

]<br />

46. y = cos θ + sin θ, [0, 2π] 47. y = θ − 2 sin θ, [0, 2π]<br />

48. y = 4 sin 3 θ − 3 cos 2 θ, [0, 2π]<br />

49. y = tan x − 2x, [0, 1]<br />

50. y = sec 2 x − 2 tan x, [−π/6, π/3]<br />

51. Let f(θ) = 2 sin 2θ + sin 4θ.<br />

(a) Show that θ is a critical point if cos 4θ = − cos 2θ.<br />

(b) Show, using a unit circle, that cos θ 1 = − cos θ 2 if and only if<br />

θ 1 = π ± θ 2 + 2πk for an integer k.<br />

(c) Show that cos 4θ = − cos 2θ if and only if θ = π 2 + πk or θ =<br />

π<br />

6 + ( π<br />

)<br />

3 k.<br />

(d) Find the six critical points of f(θ) on [0, 2π] and find the extreme<br />

values of f(θ) on this interval.<br />

(e) Check your results against a graph of f(θ).<br />

52. Find the critical points of f (x) = 2 cos 3x + 3 cos 2x in<br />

[0, 2π]. Check your answer against a graph of f (x).<br />

In Exercises 53–56, find the critical points and the extreme values on<br />

[0, 4]. In Exercises 55 and 56, refer to Figure 18.<br />

53. y =|x − 2| 54. y =|3x − 9|<br />

55. y =|x 2 + 4x − 12| 56. y =|cos x|<br />

30<br />

20<br />

10<br />

y<br />

−6<br />

2<br />

y = |x 2 + 4x − 12|<br />

x<br />

−<br />

π<br />

2<br />

FIGURE 18<br />

1<br />

y<br />

y = |cos x|<br />

In Exercises 57–60, verify Rolle’s Theorem for the given interval.<br />

57. f (x) = x + x −1 [<br />

, 12<br />

, 2 ] [<br />

58. f (x) = sin x, π4<br />

, 3π ]<br />

4<br />

59. f (x) = x2 , [3, 5]<br />

8x − 15<br />

60. f (x) = sin 2 x − cos 2 x,<br />

[ π4<br />

, 3π ]<br />

4<br />

61. Prove that f (x) = x 5 + 2x 3 + 4x − 12 has precisely one real root.<br />

62. Prove that f (x) = x 3 + 3x 2 + 6x has precisely one real root.<br />

63. Prove that f (x) = x 4 + 5x 3 + 4x has no root c satisfying c>0.<br />

Hint: Note that x = 0 is a root and apply Rolle’s Theorem.<br />

64. Prove that c = 4 is the largest root of f (x) = x 4 − 8x 2 − 128.<br />

65. The position of a mass oscillating at the end of a spring is s(t) =<br />

A sin ωt, where A is the amplitude and ω is the angular frequency.<br />

Show that the speed |v(t)| is at a maximum when the acceleration a(t)<br />

is zero and that |a(t)| is at a maximum when v(t) is zero.<br />

66. The concentration C(t) (in mg/cm 3 ) of a drug in a patient’s bloodstream<br />

after t hours is<br />

C(t) = 0.016t<br />

t 2 + 4t + 4<br />

Find the maximum concentration in the time interval [0, 8] and the time<br />

at which it occurs.<br />

π<br />

2<br />

π<br />

3π<br />

2<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!