08.07.2017 Views

Calculus 2nd Edition Rogawski

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SECTION 8.2 Trigonometric Integrals 419<br />

Integrating sin m x cos n x<br />

Case 1: m = 2k + 1 odd<br />

Write sin 2k+1 x as (1 − cos 2 x) k sin x.<br />

Then ∫ sin 2k+1 x cos n xdxbecomes<br />

∫<br />

sin x(1 − cos 2 x) k cos n xdx<br />

Substitute u = cos x,−du = sin xdx.<br />

Case 2: n = 2k + 1 odd<br />

Write cos 2k+1 x as (1 − sin 2 x) k cos x<br />

Then ∫ sin m x cos 2k+1 xdxbecomes<br />

∫<br />

sin m x(1 − sin 2 x) k cos xdx<br />

Substitute u = sin x,du = cos xdx.<br />

Case 3: m, n both even<br />

Use reduction formulas (1) or (2) as<br />

described below or use the method of<br />

Exercises 65–68.<br />

The strategy of the previous example works when sin m x appears with m odd. Similarly,<br />

if n is odd, write cos n x as a power of (1 − sin 2 x) times cos x.<br />

EXAMPLE 2 Odd Power of sin x or cos x<br />

∫<br />

Evaluate<br />

sin 4 x cos 5 xdx.<br />

Solution We take advantage of the fact that cos 5 x is an odd power to write<br />

sin 4 x cos 5 xdx= sin 4 x cos 4 x(cos xdx)= sin 4 x(1 − sin 2 x) 2 (cos xdx)<br />

This allows us to use the substitution u = sin x, du = cos xdx:<br />

∫<br />

∫<br />

sin 4 x cos 5 xdx= (sin 4 x)(1 − sin 2 x) 2 cos xdx<br />

∫<br />

∫<br />

= u 4 (1 − u 2 ) 2 du = (u 4 − 2u 6 + u 8 )du<br />

= u5<br />

5 − 2u7<br />

7 + u9<br />

9 + C = sin5 x<br />

− 2 sin7 x<br />

+ sin9 x<br />

+ C<br />

5 7 9<br />

The following reduction formulas can be used to integrate sin n x and cos n x for any<br />

exponent n, even or odd (their proofs are left as exercises; see Exercise 64).<br />

Reduction Formulas for Sine and Cosine<br />

∫<br />

sin n xdx= − 1 n sinn−1 x cos x + n − 1<br />

n<br />

∫<br />

sin n−2 xdx 1<br />

∫<br />

cos n xdx= 1 n cosn−1 x sin x + n − 1<br />

n<br />

∫<br />

cos n−2 xdx 2<br />

∫<br />

EXAMPLE 3 Evaluate<br />

sin 4 xdx.<br />

Solution Apply Eq. (1) with n = 4,<br />

∫<br />

sin 4 xdx= − 1 4 sin3 x cos x + 3 ∫<br />

4<br />

sin 2 xdx 3<br />

Then apply Eq. (1) again, with n = 2, to the integral on the right:<br />

∫<br />

sin 2 xdx= − 1 2 sin x cos x + 1 ∫<br />

dx = − 1 2 2 sin x cos x + 1 2 x + C 4<br />

Using Eq. (4) in Eq. (3), we obtain<br />

∫<br />

sin 4 xdx= − 1 4 sin3 x cos x − 3 8 sin x cos x + 3 8 x + C<br />

Trigonometric integrals can be expressed in many different ways because trigonometric<br />

functions satisfy a large number of identities. For example, a computer algebra<br />

system might evaluate the integral in the previous example as<br />

∫<br />

sin 4 xdx= 1 (x − 8 sin 2x + sin 4x) + C<br />

32<br />

You can check that this agrees with the result in Example 3 (Exercise 61).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!