atw 2018-12

inforum

nucmag.com

2018

11/12

573

Should Nuclear Energy

Play a Role in a Carbon-

Constrained World?

580 ı Energy Policy, Economy and Law

NIS Directive in the Energy Sector

587 ı Environment and Safety

Release-Category-Oriented Risk

ISSN · 1431-5254

24.– €

601 ı Decommissioning and Waste Management

Decommissioning:

An Interdisciplinary Task for Junior Staff

607 ı Research and Innovation

Kurchatov Institute’s Critical Assemblies

Register

Now!


atw Vol. 63 (2018) | Issue 11/12 ı November/December

2018: A “Quincuplex” for Nuclear Power

Dear reader, “Do good and talk about it.” Anyone who today follows protagonists of technical progress and technical

innovations – sometimes only supposedly, often for technology on four wheels or with rocket propulsion for space – sees

more than ever how important active “marketing” or “advertising” with a good portion of self-confidence and convincing

appearance are for business success.

A look at five such groundbreaking events of 2018 in the

nuclear energy sector should also convey such a sense of

optimism for our industry. But which five events? Test for

yourself and do some search in the news of the WWW ...

and, will you find what you are looking for? At least for

the German-speaking area it will be narrow here, the

English language already supplies more hits and who is

knowledgeable of the Chinese, finds the answers.

So let’s turn to Asia, certainly the most dynamically

developing region in the world today.

On 6 June 2018 the time had come. Taishan 1 was the

first EPR reactor in the world to achieve first criticality.

After VVER-1200 Novovoronezh II-1, with commissioning

in 2016, it is the second reactor type of Generation

III+ that went into operation. The EPR originates from

the earlier cooperation between Siemens/KWU and

Framamtome in the 1990s. It brings together the development,

construction and operating experience of the

pressurized water reactors of the French N4 series and the

three German KWU convoy plants. In addition to further

economic optimisation, e.g. through an extended fuel

cycle and an operating life of at least 60 years, additional

safety features are added, such as a core catcher for

controlling design-basis accidents and other safety

redundancies. The first two “First of a Kind” EPR projects,

Olkiluoto 3 in Finland and Flamanville 3, have been under

construction since 2005 and 2007, respectively. The

projects have been delayed several times for a different

reasons, including complex requirements for operational

facilities and safety defined in the approval procedure.

Construction of the Chinese Taishan plant with two blocks

under the designation CEPR (Chinese EPR) began in 2009.

While retaining the basic design and layout features,

specific Chinese customer requirements have been

implemented, resulting in an increased plant output of

1,750 MW gross. Taishan 2 is also expected to go into

operation in the foreseeable future. Other EPR projects

currently include Hinkley Point C-1 and C-2 in the UK –

where the subsoil is being prepared – and six blocks in

India.

A few days later, on 21 June 2018, the first AP1000

reactor, a further third generation III+ plant, became

critical for the first time in Sanmen, China. Construction of

the two AP1000 units erected at the Sanmen site began in

2009. The concept developed by Westinghouse Electric for a

nuclear power plant with a gross output of around

1,100 MW integrates revolutionary elements in several

respects. Thus, the AP1000 represents a new concept

not only in terms of building design. The modular design

and a passive safety concept for core and containment

emergency cooling are striking features of the pressurized

water reactor.

The AP1000 projects started in China in 2009/2010

then continued at a rapid pace: on August 8, 2018, the

Haiyang 1 unit reached first criticality, followed by the

Sanmen 2 and Haiyang 2 units on August 17 and September

29, 2018, respectively. Two further AP1000 units have

been under construction at the Vogtle site in the USA since

2013, and the two projects at the Summer site were

discontinued in 2017 due to the manufacturer’s Chapter 11

insolvency proceedings.

With these five nuclear power plants commissioned in

2018 and the Russian VVER-1200 projects – one plant

commissioned since 2016, Leningrad II-1 commissioned on

6 February 2018 and active construction projects in

Belarus, Turkey and Bangladesh as well as planning for

Finland, Hungary, Egypt and India - and these five nuclear

power plants commissioned in 2018, Generation III+

nuclear power plants are no longer a vision, they are reality

in a real world that needs a secure energy supply day and

night.

The projects in Asia, but also those of the Russian

company Rosatom, prove that nuclear power plants of this

development stage can also be built within the planned

budget and thus above all with a view to the “levelised cost

of electricity”. Consistent planning in agreement with all

parties involved and a reliable regulatory environment are

prerequisites for this.

These are promising signs for the future use of nuclear

energy worldwide, which, with a view to aspects such as

security of supply, affordable generation costs and

low-emission technology, is once again being increasingly

brought to the fore by governments and organizations –

including NGOs and environmental protection associations

– as an option for the future energy mix. Signs, the

law

These are promising signs for the future use of nuclear

energy worldwide, which, with a view to aspects such as

security of supply, affordable generation costs and

low-emission technology, is once again being increasingly

brought to the fore by governments and organisations –

including NGOs and environmental protection associations

– as an option for the future energy mix. These are

signs that have been set and that now need to be communicated

and fairly communicated - even if, beyond reality,

protagonists against nuclear energy are still trying to hide

them. The same goes for the fact that half a dozen nuclear

energy news items for 2018 will be filled to overflowing,

with 454 reactors in operation worldwide, more than ever

before in the history of the peaceful use of nuclear power!

Christopher Weßelmann

– Editor in Chief –

563

EDITORIAL

Editorial

2018: A “Quincuplex” for Nuclear Power


atw Vol. 63 (2018) | Issue 11/12 ı November/December

EDITORIAL 564

2018: Ein „Quincuplex“

für die Kernenergie

Liebe Leserin, lieber Leser, „Tue Gutes und rede darüber“. Wer heute Protagonisten technischen Fortschritts

und technischer Innovationen – manchmal auch nur vermeintlicher, oft für Technik auf vier Rädern oder mit Raketenantrieb

für den Weltraum – verfolgt, sieht mehr denn je, wie wichtig aktives „Marketing“ oder „Werbung“ mit einer

gehörigen Portion Selbstbewusstsein und überzeugendem Auftreten für betriebswirtschaftlichen Erfolg sind.

Ein Blick auf fünf solcher wegwei sender Ereignisse des

Jahres 2018 aus dem Kernenergiesektor sollte auch für

unsere Branche eine solche Aufbruchstimmung vermitteln.

Doch welche sind es? Testen Sie selbst und recherchieren

einmal in den Nachrichten des allvermittelnden

WWW ... und, werden Sie fündig? Zumindest für den

deutschen Sprachraum wird es hier eng, die englische

Sprache liefert schon mehr Treffer und wer des

Chinesischen kundig ist, findet die Antworten.

Wenden wir uns also Asien zu, der aktuell sicherlich

weiterhin dynamischsten sich entwickelnden Region

weltweit.

Am 6. Juni 2018 war es soweit. Taishan 1 erreichte als

erster EPR-Reaktor weltweit Erstkritikalität. Nach dem

WWER-1200 Nowoworonesch II-1, mit Inbetriebnahme in

2016, ist es der zweite Reaktortyp der Generation III+ der

in Betrieb gegangen ist. Der EPR entstammt der früheren

Zusammenarbeit von Siemens/KWU und Framamtome

aus den 1990er Jahren. Er führt die Entwicklungs-, Bauund

Betriebserfahrungen der Druckwasserreaktoren der

französischen N4-Baureihe und der drei deutschen KWU-

Konvoi-Anlagen zusammen. Neben einer weiteren Optimierung

der Ökonomie z.B. durch einen verlängerten

Brennstoffzyklus und eine auf minimal 60 Jahre ausgelegte

Betriebszeit kommen zusätzliche Sicherheitsmerkmale

hinzu, wie ein Core-Catcher für die Beherrschung

auslegungsüberschreitende Störfälle sowie

weitere Sicherheits-Redundanzen. Die ersten beiden –

„First of a Kind“ – EPR-Projekte Olkiluoto 3 in Finnland sowie

Flamanville 3 sind seit 2005 bzw. 2007 in Bau.

Verschiedenste Ursachen, so komplexe, im Genehmigungsverfahren

definierte, Anforderungen an betriebliche

Einrichtungen und die Sicherheit haben die Projekte

mehrfach verzögert. Baubeginn für die chinesische Anlage

Taishan mit zwei Blöcken unter der Bezeichnung CEPR

(Chinese EPR) war 2009. Unter Beibehaltung der grundlegenden

Auslegungs- und Designmerkmale sind spezifische

chinesische Kundenwünsche implementiert, so eine

erhöhte Leistung der Anlage von 1.750 MW brutto.

­Taishan 2 soll absehbar ebenfalls in Betrieb gehen. Weitere

EPR-Projekte sind derzeit Hinkley Point C-1 und C-2 in

Großbritannien – hier wird der Baugrund vorbereitet –

sowie sechs Blöcke in Indien.

Wenige Tage später, am 21. Juni 2018, wurde der erste

AP1000-Reaktor, eine weitere, die dritte Generation III+-

Anlagen, im chinesischen Sanmen erstmals kritisch.

Baubeginn für die zwei am Standort Sanmen errichteten

AP1000-Blöcke war 2009. Das von Westinghouse Electric

entwickelte Konzept für ein Kernkraftwerk mit einer

Leistung von um die 1.100 MW brutto integriert in

mehrerlei Hinsicht revolutionäre Elemente. Somit stellt

der AP1000 nicht nur vom Gebäudedesign her ein neues

Konzept dar. Markant für den Druckwasserreaktor sind

unter anderem die modulare Bauweise sowie ein passives

Sicherheitskonzept für die Kern- und Containmentnotkühlung.

Mit den in den Jahren 2009/2010 begonnenen AP1000-

Projekten in China ging es dann rasant weiter: Am 8. August

2018 erreichte der Block Haiyang 1 Erstkritikalität und am

17. August bzw. 29. September 2018 folgten die Blöcke

Sanmen 2 und Haiyang 2. Zwei weitere AP1000-Blöcke

sind am Standort Vogtle in den USA seit 2013 in Bau, die

beiden Vorhaben am Standort Summer wurden im Jahr

2017 aufgrund des „Chapter 11 Insolvenzverfahrens“ des

Herstellers eingestellt.

Mit diesen fünf in 2018 in Betrieb gegangenen Kernkraftwerken

sowie den russischen WWER-1200-Projekten

– eine Anlage seit 2016 in Betrieb, Leningrad II-1 wurde am

6. Februar 2018 in Betrieb genommen sowie aktiven Bauvorhaben

in Weißrussland, der Türkei und Bangladesch

sowie Planungen für Finnland, Ungarn, Ägypten und

Indien, sind Kernkraftwerke der Generation III+ keine

Vision mehr, sie sind Realität in einer realen Welt, die eine

sichere Energieversorgung Tag und Nacht braucht.

Die Projekte in Asien, aber auch die der russischen

Rosatom belegen, dass Kernkraftwerke dieser Entwicklungsstufe

auch im vorgesehenen Kostenrahmen und

damit vor allem mit Blick auf die „Levelised cost of

Electricity“, also die Gesamt-Stromgestehungskosten

errichtet werden können. Konsequente Planung im

Einvernehmen aller Beteiligten und ein verlässliches

regulatorisches Umfeld sind dafür mit Voraussetzungen.

Für die zukünftige Nutzung der Kernenergie weltweit,

die mit Blick auf Aspekte wie Versorgungssicherheit,

bezahlbare Erzeugungskosten und emissionsarme

Technologie wieder stärker von Regierungen und Organisationen

– auch NGOs und Umweltschutzverbänden – als

Option für den zukünftigen Energiemix in den Fokus

gerückt wird, sind dies vielversprechenden Zeichen.

Zeichen, die gesetzt sind und für die es jetzt gilt, sie zu

kommunizieren und fair kommuniziert zu werden – auch,

wenn jenseits der Realität Protagonisten gegen die Kernenergie

immer noch versuchen, dies auszublenden. So

auch die Tatsachen, quasi um das halbe Dutzend an

Kernenergienachrichten für 2018 voll zumachen, dass mit

454 Reaktoren so viele weltweit in Betrieb sind, wie nie

zuvor in der Geschichte der friedlichen Nutzung der

Kernenergie!

Christopher Weßelmann

– Chefredakteur –

Editorial

2018: A “Quincuplex” for Nuclear Power


Kommunikation und

Training für Kerntechnik

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort

3 Atom-, Vertrags- und Exportrecht

Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke 02.04.2019

22.10.2019

Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 05.03.2019

17.09.2019

Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.04.2019 Berlin

Atomrecht – Was Sie wissen müssen

Export kerntechnischer Produkte und Dienstleistungen –

Chancen und Regularien

3 Kommunikation und Politik

RA Dr. Christian Raetzke

Akos Frank LL. M.

RA Kay Höft M. A.

RA Olaf Kreuzer

Dr. Ing. Wolfgang Steinwarz

Berlin

Berlin

04.06.2019 Berlin

12.06. - 13.06.2019 Berlin

Public Hearing Workshop –

Öffentliche Anhörungen erfolgreich meistern

Schlüsselfaktor Interkulturelle Kompetenz –

International verstehen und verstanden werden

Dr. Nikolai A. Behr 05.11. - 06.11.2019 Berlin

Angela Lloyd 20.03.2019 Berlin

3 Rückbau und Strahlenschutz

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:

3 Nuclear English

Stilllegung und Rückbau in Recht und Praxis

Das neue Strahlenschutzgesetz –

Folgen für Recht und Praxis

Dr. Matthias Bauerfeind

RA Dr. Christian Raetzke

Maria Poetsch

RA Dr. Christian Raetzke

29.01. - 30.01.2019

24.09. - 25.09.2019

12.02. - 13.02.2019

18.03. - 19.03.2019

25.06. - 26.06.2019

Berlin

Berlin

Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.2019 Berlin

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 10.04. - 11.04.2019

18.09. - 19.09.2019

3 Wissenstransfer und Veränderungsmanagement

Berlin

Veränderungsprozesse gestalten – Heraus forderungen

meistern, Beteiligte gewinnen

Erfolgreicher Wissenstransfer in der Kern technik –

Methoden und praktische Anwendung

Dr. Tanja-Vera Herking

Dr. Christien Zedler

Dr. Tanja-Vera Herking

Dr. Christien Zedler

22.01. - 23.01.2019

26.11. - 27.11.2019

Berlin

26.03. - 27.03.2019 Berlin

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30

Kontakt

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de

Die INFORUM-Seminare können je nach

Inhalt ggf. als Beitrag zur Aktualisierung

der Fachkunde geeignet sein.


atw Vol. 63 (2018) | Issue 11/12 ı November/December

566

Issue 11/12

November/December

CONTENTS

573

Should Nuclear Energy

Play a Role in a Carbon-

Constrained World?

| | Development of nuclear technology. Fuel element heads for heavy water reactor fuel elements. (Courtesy: NA-SA)

Editorial

2018: A “Quincuplex” for Nuclear Power 563

2018: Ein „Quincuplex“ für die Kernenergie 564

Abstracts | English 568

Abstracts | German 569

Inside Nuclear with NucNet

How Nuclear Industry Can Solve

‘ Fundamental Obstacle’ of High Capital Cost 570

DAtF Notes. . . . . . . . . . . . . . . . . . . . . .571

Calendar . . . . . . . . . . . . . . . . . . . . . . . 572

Energy Policy, Economy and Law

Should Nuclear Energy Play a Role

in a Carbon-Constrained World? 573

Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti

Talks of an End to Germany’s

Nuclear Industry Premature 578

Roman Martinek

Development on NIS Directive in Different

EU Countries in the Energy Sector 580

Stefan Loubichi

573

Spotlight on Nuclear Law

Arbitrary-peaceful?

Consequences of the “Achmea” Decision

of the ECJ also for the ICSID Arbitration

of Vattenfall? 585

Schiedlich-friedlich? –

Folgen des „Achmea“-Urteils des EuGH

auch für das ICSID-Schiedsgerichtsverfahren

von Vattenfall? 585

| | Human Development Index versus per capita electricity consumption

Ulrike Feldmann

Contents


atw Vol. 63 (2018) | Issue 11/12 ı November/December

567

Environment and Safety

Release-Category-Oriented Risk

Importance Measure in the Frame of

Preventive Nuclear Safety Barriers 587

CONTENTS

Juan Carlos de la Rosa Blul and Luca Ammirabilea

607

| | Classification of the different scenarios.

587

| | Relationship between the different Nuclear Safety Pillars.

Decommissioning and Waste Management

Position paper: Probability Classes and

Handling of Improbable Developments 593

Position des Arbeitskreises

„Szenarienentwicklung“ zur Thematik:

Wahrscheinlich keitsklassen und Umgang mit

unwahrscheinlichen Entwicklungen 593

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz,

J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel,

G. Stolzenberg, J. Wolf and J. Wollrath

Research and Innovation

Kurchatov Institute’s Critical Assemblies 607

Andrej Yurjewitsch Gagarinskiy

AMNT 2018

Key Topic

Enhanced Safety & Operation Excellence

Focus Session

“International Operational Experience” 610

Ludger Mohrbach

KTG Inside 613

News 616

Nuclear Today

Brexit and Trump Among Fresh Challenges

for Nuclear in Year Ahead 626

John Shepherd

Imprint 614

593

INFORUM: Seminar Programme 2019

Insert

| | Classification of the different scenarios.

Decommissioning of Nuclear Facilities:

An Interdisciplinary Task for Junior Staff 601

Der Rückbau kerntechnischer Anlagen:

Eine interdisziplinäre Aufgabe

für Nachwuchskräfte 601

David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann

Contents


atw Vol. 63 (2018) | Issue 11/12 ı November/December

568

ABSTRACTS | ENGLISH

How Nuclear Industry can Solve

‘ Fundamental Obstacle’ of High Capital Cost

NucNet | Page 570

History shows that new nuclear generating capacity

can be deployed as quickly as coal and gas-fired

capacity, but the high capital cost of new nuclear

plants remains “a fundamental obstacle” which the

industry needs to tackle, a report by the Massachusetts

Institute of Technology (MIT) Energy Initiative

found. If the global nuclear industry achieved the

pace of plant construction and deployment seen in

France and the US in the 1970s and 1980s, the world’s

energy sector would be completely decarbonised by

2050, Jacopo Buongiorno, a co-director of the study

and an associate department head of the Department

of Nuclear Science and Engineering at MIT, said

during a briefing on the report in Brussels.

Should Nuclear Energy Play a Role in a

Carbon-Constrained World?

Jacopo Buongiorno, Michael Corradini,

John Parsons and David Petti | Page 573

We summarize the findings of a new MIT study on

the future of nuclear energy. The context for the

study is the challenge of simultaneously expanding

energy access and economic opportunity to billions

of people while drastically reducing emissions of

greenhouse gases. We find that while decarbonization

of the electricity sector can be accomplished

employing an assortment of low-carbon technologies

in various combinations, nuclear has a uniquely

valuable role to play as a dispatchable low-carbon

technology. Excluding a dispatchable low-carbon

option like nuclear, as the German Energiewende

does, significantly increases the cost and difficulty of

achieving decarbonization targets. We also find that

the high cost of new nuclear plants limits nuclear’s

role in a balanced portfolio. Reducing this cost can

significantly reduce the total cost of decarbonization.

Our study identified the factors driving up cost,

and we identify promising approaches to achieving

cost reductions. Finally, we identify needed government

policies. These include decarbonization strategies

that recognize the contribution of all lowcarbon

energy technologies and treat them equally

in the electricity market. These also include policies

to accommodate and support development and

demonstration of advanced reactor designs.

Talks of an End to Germany’s Nuclear

Industry Premature

Roman Martinek | Page 578

There now remains hardly anyone in Germany who

has not yet dropped in the last few years a single line

about how the country is valiantly closing one by

one its nuclear power plants. It was difficult to

expect anything else, though, if one keeps in mind

that the accelerated phase-out of nuclear energy

announced by the German political establishment

in 2011 became perhaps the most resonant energy

policy decision in the country’s recent history.

At the same time, it is often overlooked that the

“Atomausstieg” (the name given to Germany’s

denuclearization) is a like a hat that has a false

bottom to it: the issue of disconnection from the

grid lying on the surface of public discourse, while

behind it (or ‘under’ it, if you will) lies a number of

deeper and more far-reaching questions.

Development on NIS Directive in Different

EU Countries in the Energy Sector

Stefan Loubichi | Page 580

The magnitude, frequency and impact of security incidents

are increasing, and represent a major threat

to the functioning of network and information

systems. These systems may also become a target for

deliberate harmful actions intended to damage or

interrupt the operation of the systems. Such incidents

can impede the pursuit of economic activities,

generate substantial financial losses, undermine user

confidence and cause major damage to the economy

of the Union. The answer of the European Union to

this challenge was the NIS Directive.

Arbitrary-peaceful? Consequences of the

“Achmea” Decision of the ECJ also for the

ICSID Arbitration of Vattenfall?

Ulrike Feldmann | Page 585

On 6 March 2018, the European Court of Justice

(ECJ, Grand Chamber) issued a serious and controversial

ruling on the compatibility of investment

protection clauses with Union law (C-284/16 –

“ Achmea”). Various parties have raised the question

of whether the ruling also applies to agreements

such as the Energy Charter, to which the EU itself is

a contracting party. The Energy Charter is the basis

of the Swedish Vattenfall AB and other plaintiffs’

proceedings before the International Centre for

Settlement of Investment Disputes (ICSID), which

belongs to the World Bank in Washington D.C..

ICSID was established in 1965 by the ICSID

Convention, to which 153 states belong.

Release-Category-Oriented Risk Importance

Measure in the Frame of Preventive Nuclear

Safety Barriers

Juan Carlos de la Rosa Blul and

Luca Ammirabile | Page 587

After the Fukushima accident, the interest on the

field of severe accidents has largely increased, both

on the management aspects – to improve the

prevention of severe accident progression and

mitigate their consequences –, but also in sponsoring

research activities focused on reducing the

uncertainty still present on physical and chemical

phenomena and processes taking place during a

postulated severe accident. One of the most relevant

and comprehensive approaches to look into the field

of severe accidents consists of the Level 2 Probabilistic

Risk Assessment (PRA). In order to reveal the

relative probabilistic weight each system, structure

or component contributes with to the integrated

core damage frequency, several consolidated risk

measures are available for application, among

which Risk Reduction Worth or Fussell-Vesely.

This paper discusses the nature of the different

approaches underlying the existing nuclear safety

barriers and introduces an innovative severeaccident

risk importance measure. This innovative

risk measure takes into account the entire spectrum

of accidents leading to radioactive releases rather

than only focusing at large and early releases. By

applying this tool, the importance is shifted from a

consequence-oriented to a frequency-oriented tool

where the contribution of the different elements of

the plant will be ranked according to their impact

on the total radioactive release frequency.

Position of the Working Group

“Scenario Development” on the Topic:

Probability Classes and Handling

of Improbable Developments

J. Orzechowski, G. Stolzenberg, J. Wollrath,

A. Lommerzheim, S. Mrugalla, Th. Beuth, G. Bracke,

K.-M. Mayer, J. Mönig, A. Rübel, J. Wolf, V. Metz,

S. Chaudry, E. Plischke and K.-J. Röhlig | Page 594

The safety requirements demand the consideration

of different probabilities of occurrence in the

analysis of future evolutions of a disposal system

and disposal site. Furthermore, the Commission

which was established according to the Repository

Site Selection Act requires, as stated in the final

report , the review of the classification in the

probability classes “probable”, “less probable” and

“improbable” evolutions as well as of the distinction

between “probable” and “less probable” evolutions.

In the past, probable and less probable scenarios

were derived during research projects related to the

scenario development. Furthermore, evolutions on

the basis of human intrusion into a disposal system

were examined as well. However, improbable

evolutions have not been considered so far. The

Working Group “Scenario Development” (AKS)

dealt with the classification into probability

classes and with the derivation and treatment

of improbable scenarios. The position was

elaborated by the AKS.

Decommissioning of Nuclear Facilities:

An Interdisciplinary Task for Junior Staff

David Anton, Manuel Reichardt, Thomas Hassel and

Harald Budelmann | Page 602

Some challenges and boundary conditions are

outlined which accompany the dismantling of

nuclear facilities. Compared to the dismantling of

conventional facilities, the work in nuclear facilities

is considerably impeded by the radiological load.

The decommissioning concept has to be individually

developed or adapted for each nuclear installation

taking into account the various boundary conditions.

The versatility of the challenges in connection

with the dismantling of nuclear facilities and

the interim or final disposal of radioactive waste

underlines the necessity of an interdisciplinary

approach.

Kurchatov Institute’s Critical Assemblies

Andrej Yurjewitsch Gagarinskiy | Page 607

Since its establishment, the Kurchatov Institute of

Atomic Energy (now National Research Centre

“ Kurchatov Institute”) was always involved in R&D

on nuclear reactors for various applications. This

activity required dedicated critical facilities (whose

number, design and purpose naturally varied with

time). This paper reviews the status of the Kurchatov

Institute’s experimental park that includes more

than ten critical assemblies intended for R&D

for power (VVER, RBMK, HTGR), ship and space

reactors.

49 th Annual Meeting on Nuclear Technology

(AMNT 2018) Key Topic | Enhanced Safety &

Operation Excellence

Ludger Mohrbach | Page 610

The report summarises the presentations of the Focus

Session “International Operational Experience” Key

Topic “Enhanced Safety & Operation Excellence”

presented at the AMNT 2018, Berlin, 29 to 30 May

2018.

Brexit and Trump Among Fresh Challenges

for Nuclear in Year Ahead

John Shepherd | Page 626

As 2018 draws to a close, there have been several

developments that will mean the new year dawning

with fresh uncertainties on the horizon for the

global nuclear energy industry: Brexit and

announcement of the Trump administration for a

new policy framework for curtailing civil nuclear

commerce with China are two of them.

Abstracts | English


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Wie kann die Nuklearindustrie mit

der Herausforderung hoher Kapitalkosten

umgehen?

NucNet | Seite 570

Die Geschichte zeigt, dass neue Kernkraftwerke

schnell hinzu gebaut werden können, aber die

hohen Investitionskosten für neue Kernkraftwerke

„eine grundlegende Herausforderung“ sind, mit

dem die Industrie konfrontiert wird. Ein Bericht der

Massachusetts Institute of Technology (MIT)

Energy Initiative kommt fasst dies zusammen.

Wenn die Nuklearindustrie das Tempo des Anlagenbaus

und der Inbetriebnahme in Frankreich und

den USA in den 1970er und 1980er Jahren erreichen

würde, könnte der weltweite Energiesektor bis

2050 vollständig dekarbonisiert sein, sagte Jacopo

Buongiorno, Co-Direktor der Studie und stellvertretender

Abteilungsleiter des Department of

Nuclear Science and Engineering am MIT, während

eines Briefings über den Bericht in Brüssel.

Sollte die Kernenergie eine Rolle bei der

weltweiten Dekarbonisierung spielen?

Jacopo Buongiorno, Michael Corradini,

John Parsons und David Petti | Seite 573

Zusammengefasst sind die Ergebnisse einer neuen

MIT-Studie zur Zukunft der Kernenergie. Der

Kontext für die Studie ist die Herausforderung, den

Zugang zu Energie und die wirtschaftlichen

Möglichkeiten für Milliarden von Menschen zu

erweitern und gleichzeitig die Emissionen von

Treibhausgasen drastisch zu reduzieren. Die Dekarbonisierung

des Elektrizitätssektors kann zwar

durch den Einsatz einer Reihe von kohlenstoffarmen

Technologien in verschiedenen Kombinationen

erreicht werden, Kernkraft ist jedoch die

einzig ausreichend verfügbare kohlenstoffarme

Technologie. Der Ausschluss einer leistungsfähigen

kohlenstoffarmen Option wie der Kernenergie, wie

es bei der deutschen Energiewende der Fall ist, ist

mit erheblichen Herausforderungen verbunden.

Hohe Kapitalkosten für neue Kernkraftwerke

schränken allerdings auch die Investitionsbereitschaft

ein. Die Reduzierung dieser Kosten kann die

Gesamtkosten der Dekarbonisierung erheblich

reduzieren. Abschließend werden Regierungspolitiken

analysiert. Dazu gehören auch Dekarbonisierungsstrategien,

die den Beitrag aller kohlenstoffarmen

Energietechnologien gleich behandeln,

auch den der Kernenergie.

Kein weitere Diskurs zur

deutschen Nukleartechnik

Roman Martinek | Seite 578

In Deutschland gibt es heute kaum noch jemanden,

der in den letzten Jahren darüber schreibt, wie das

Land seine Kernkraftwerke nacheinander stilllegt.

Es war kaum etwas anderes zu erwarten, denn der

von der deutschen Politik im Jahr 2011 beschlossene

beschleunigte Ausstieg aus der Kernenergie wurde

medial zustimmend begleitet und ist sicherlich eine

bedeutende energiepolitische Entscheidung in der

jüngeren Geschichte des Landes. Es muss dennoch

mit allen Fragen und Herausforderungen des „Atomausstiegs“,

auch öffentlich, umgegangen werden.

Die Anwendung der NIS Direktive im

Energiesektor in einigen EU-Staaten

Stefan Loubichi | Seite 580

Die so genannte NIS RICHTLINIE (EU) 2016/1148

war der erste wichtige Schritt in Richtung der

Implementierun eines gemeinsamen Standards der

Informationssicherheit für die gesamte EU. Die

Richtlinie wird in allen EU Ländern unterschiedlich

umgesetzt. Das nächste Problem besteht darin, dass

die Umsetzung in den einzelnen Ländern auch sehr

unterschiedlich ist. Zusammenhänge und Details

dazu werden vorgestellt.

Schiedlich-friedlich? – Folgen des

„Achmea“-Urteils des EuGH auch für

das ICSID-Schiedsgerichtsverfahren

von Vattenfall?

Ulrike Feldmann | Seite 585

Am 6. März 2018 hat der Europäische Gerichtshof

(EuGH, Große Kammer) ein folgenschweres

und umstrittenes Urteil zur Vereinbarkeit von

Inves titionsschutzklauseln mit Unionsrecht gefällt

(Rechtssache C-284/16 - „Achmea“). Es wird von

verschiedenen Seiten die Frage aufgeworfen

worden, ob das Urteil auch für Abkommen wie z.B.

die Energiecharta gilt, bei denen die EU selber

Vertragspartei ist. Die Energiecharta ist Grundlage

des Verfahrens der schwedischen Vattenfall AB und

weiterer Kläger vor dem Internationalen Zentrum

zur Beilegung von Investitionsstreitigkeiten/International

Centre for Settlement of Investment

Disputes (ICSID), das zur Weltbank in Washington

D.C. gehört. Das ICSID wurde 1965 durch die

ICSID-Konvention gegründet, der 153 Staaten

angehören.

Freisetzungskategorie-orientierte

Risikobetrachtung zur Beurteilung

vorsorglicher Sicherheitsbarrieren

Juan Carlos de la Rosa Blul und

Luca Ammirabile | Seite 587

Nach dem Unfall von Fukushima hat das Interesse

an Analysen zu schweren Unfällen stark zugenommen,

sowohl hinsichtlich administrativer Maßnahmen

– zur Verbesserung der Prävention und

Minimierung schwerer Unfallfolgen – als auch bei

der Förderung von Forschungsaktivitäten, die sich

auf noch bestehende Unsicherheiten zu physikalischen

und chemischen Phänomene und Prozesse

konzentrieren, die während eines postulierten

schweren Unfalls eine Rolle spielen können. Ein

relevante und umfassender Ansatz zur Untersuchung

schwerer Unfälle ist das Level 2 Probabilistic

Risk Assessment (PRA). Um die relative wahrscheinlichkeitsbezogene

Gewichtung zu ermitteln,

die jedes System, jede Struktur oder Komponente

zur Kernschadenshäufigkeit beiträgt, stehen

mehrere Risikomaßstäbe zur Disposition. Die verschiedenen

Ansätze dafür werden diskutiert und

ein innovatives Maß für die jeweilige Bedeutung des

Beitrags zum Schwerstörfallrisiko wird eingeführt.

Diese Verfahren berücksichtigt das gesamte

Spektrum von Unfällen, die zu radioaktiven Freisetzungen

führen. Durch die Anwendung des Tools

kann der Beitrag zum Risiko der verschiedenen

Komponenten einer Anlage ermittelt werden.

Position des Arbeitskreises „Szenarienentwicklung“

zur Thematik: Wahrscheinlichkeitsklassen

und Umgang mit

unwahrscheinlichen Entwicklungen

J. Orzechowski, G. Stolzenberg, J. Wollrath,

A. Lommerzheim, S. Mrugalla, Th. Beuth, G. Bracke,

K.-M. Mayer, J. Mönig, A. Rübel, J. Wolf, V. Metz,

S. Chaudry, E. Plischke und K.-J. Röhlig | Seite 594

Die Sicherheitsanforderungen verlangen bei der

Analyse von zukünftigen Entwicklungen eines Endlagers

und Endlagerstandortes die Unter scheidung

hinsichtlich der Wahrscheinlichkeit ihres Eintretens.

Darüber hinaus forderte die nach dem Standortauswahlgesetz

in 2013 eingesetzte Endlagerkommission

in ihrem Abschlussbericht die Überprüfung

der Einteilung in die Wahrscheinlichkeitsklassen

„wahrscheinliche“, „we niger wahrscheinliche“ und

„unwahrschein liche“ Entwicklungen und der

Trennung in „wahrscheinliche“ und „weniger wahrscheinliche“

Entwicklungen.

Der Arbeitskreis „Szenarienentwicklung“ (AKS) hat

sich mit der Einteilung von Entwicklungen in

Wahrscheinlichkeitsklassen, der Ableitung von

unwahrscheinlichen Szenarien sowie mit deren

Behandlung auseinandergesetzt und die vorgestellte

Position formuliert.

Der Rückbau kerntechnischer Anlagen:

Eine interdisziplinäre Aufgabe

für Nachwuchskräfte

David Anton, Manuel Reichardt,

Thomas Hassel und Harald Budelmann | Seite 602

Einige Herausforderungen und Randbedingungen

werden skizziert, die mit dem Rückbau kerntechnischer

Anlagen einhergehen. Im Vergleich zum

Rückbau konventioneller Anlagen werden die

Arbeiten in kerntechnischen Anlagen durch die

radiologische Belastung erschwert. Das Rückbaukonzept

muss unter Berücksichtigung der vielfältigen

Randbedingungen für jede kerntechnische

Anlage individuell erarbeitet bzw. angepasst

werden. Die Vielseitigkeit der Herausforderungen

im Zusammenhang mit dem Rückbau kerntechnischer

Anlagen und der Zwischen- bzw. Endlagerung

der radioaktiven Abfälle unterstreicht

die Notwendigkeit einer interdisziplinären Herangehensweise.

Kritische Anordnungen des

Kurchatov Instituts

Andrej Yurjewitsch Gagarinskiy | Seite 607

Seit seiner Gründung ist das Kurchatov Institute of

Atomic Energy (heute National Research Centre

„Kurchatov Institute“) an der Erforschung und Entwicklung

von Kernreaktoren für verschiedene

Anwendungen beteiligt. Dies erforderte auch

Planung, Bau und Betrieb von speziellen Kritischen

Anordnungen. Dieses Papier gibt einen Überblick

über den Status des Einrichtungen des Kurchatov

Institute mit mehr als zehn Kritischen Anordnungen,

die für die Forschung und Entwicklung von

Leistungs- (VVER, RBMK, HTGR), Schiffs- und

Weltraumreaktoren vorgesehen sind.

49 th Annual Meeting on Nuclear Technology

(AMNT 2018) Key Topic | Enhanced Safety &

Operation Excellence

Ludger Mohrbach | Seite 610

Der Bericht fasst die Vorträge der Focus Session

„International Operational Experience” des Key

Topic „Enhanced Safety & Operation Excellence“

zusammen, die auf der 49. Jahrestagung Kerntechnik

(AMNT 2018) präsentiert wurden.

Brexit und die Trump-Administration:

Neue Herausforderungen für die

Kernenergie im kommenden Jahr

John Shepherd | Seite 626

Zum Ende des Jahres 2018 gab es mehrere Entwicklungen,

die möglicherweise dazu führen

werden, dass das neue Jahr mit neuen Unsicherheiten

im Kontext der globalen Kernenergieentwicklung

beginnt. Es sind dies der Brexit mit

seinen Unsicherheiten und die Ankündigung der

Trump-Administration für einen neuen politischen

Rahmen zur Beschränkung des Handels mit

Kernenergietechnologie mit China.

569

ABSTRACTS | GERMAN

Abstracts | German


atw Vol. 63 (2018) | Issue 11/12 ı November/December

570

INSIDE NUCLEAR WITH NUCNET

How Nuclear Industry Can Solve

‘ Fundamental Obstacle’

of High Capital Cost

History shows that new nuclear generating capacity can be deployed as quickly as coal and gas-fired capacity, but the

high capital cost of new nuclear plants remains “a fundamental obstacle” which the industry needs to tackle, a report

by the Massachusetts Institute of Technology Energy Initiative found.

If the global nuclear industry achieved the pace

of plant construction and deployment seen in

France and the US in the 1970s and 1980s, the

world’s energy sector would be completely

decarbonised by 2050, Jacopo Buongiorno, a

co-director of the study and an associate

department head of the Department of Nuclear Science and

Engineering at MIT, said during a briefing on the report in

Brussels.

“It is feasible based on historical data, but the important

question is can we build nuclear capacity the same way

today?” Mr Buongiorno told the briefing, organised by

European industry group Foratom.

“Such deployment requires an industry which has

sufficient manufacturing capability and resources and also

a regulatory framework in place to support it.”

According to MIT, about 75 % of the capital cost of

nuclear projects under construction, including two

AP1000s at Vogtle in the US, EPRs at Flamanville in France

and Olkiluoto in Finland, and four South Korean APR1400s

at Barakah in the United Arab Emirates, is down to civil

work, site preparation, installation and indirect costs like

engineering oversight and ownership costs.

“Only 20-25% of the total cost goes to actual nuclear

equipment, meaning that there are many issues not related

to technology which affect the bill,” Mr Buongiorno said.

“The solution to high cost will not come from a new,

innovative reactor design, but rather from shrewd

management practices,” he said.

To tackle the cost burden, the MIT report calls on the

nuclear industry to start using “proven project and contract

management practices” and to shift away from construction

of cumbersome, highly site-dependent plants to the

“serial manufacturing of standardised plants”.

“The use of cross-cutting technologies, including

modular construction in factories and shipyards,

advanced concrete solutions (e.g. steel-plate composites,

high-strength reinforcement steel, ultra-high-performance

concrete), seismic isolation technology, and advanced

plant layouts (e.g., embedment, offshore siting),

could have positive impacts on the cost and schedule

of new nuclear power plant construction”, the report

said.

The report, ‘The Future of Nuclear Energy in a Carbon-

Constrained World’, analyses the reasons for the current

global stall in nuclear energy – which accounts for only 5%

of global primary energy production – and outlines

measures that could be taken to arrest and reverse that

trend.

It concludes that nuclear energy could take its place as

a major low-carbon energy source, but issues of cost and

policy need to be addressed. New nuclear plants have

become costlier in recent decades, while other generation

technologies have become cheaper, the report said.

“This disturbing trend undermines nuclear energy’s

potential contribution and increases the cost of achieving

deep decarbonisation”, the report said.

The report found that the overnight cost for nuclear

new-build projects in Europe and the US are higher than

those for projects in South Korea or the UAE.

Overnight cost is the capital cost including engineering,

procurement and construction (EPC) costs, and owners'

costs, but excluding financial charges or interest accrued

during construction.

The overnight cost of the Olkiluoto and Flamanville

projects, and the estimated overnight cost for the EPR

project at Hinkley Point C in the UK, fall between about

$7,200 and $8,200 per kW, based on 2017 figures, the

report said.

The overnight cost for the two AP1000s under construction

at Vogtle has exceeded $8,500 per kW, while that for

two suspended VC Summer AP1000s, also in the US, is

about $6,300 per kW.

In comparison, the report said, the overnight cost for

South Korea’s APR1400 under construction at Barakah in

the UAE is $4,000 per kW. Other APR1400 projects in

South Korea have cost even less – about $3,000 per kW.

China can be even cheaper. According to the report,

China has been building nuclear units at an overnight cost

ranging between about $2,500 and $5,000 per kW.

The report said that for nuclear power to compete with

natural gas-fired energy in the absence of a carbon price,

overnight costs would have to be between $2,000 and

$4,000 per kW.

The report noted that in addition to cost-cutting efforts

and developments, action by policy makers is needed to

support the growth of nuclear energy.

John Parsons, study co-chair and senior lecturer at MIT’s

Sloan School of Management, said “the role of government

will be critical if we are to take advantage of the economic

opportunity and low-carbon potential that nuclear has to

offer”.

He said government officials must create new

decarbonisation policies that put all low-carbon energy

tech nologies on an equal footing, while also exploring

options that spur private investment in nuclear advancement.

The study laid out detailed options for government

support of nuclear. For example, the authors recommend

that policymakers should avoid premature closures of

existing plants, which undermine efforts to reduce

emissions and increase the cost of achieving emission

reduction targets.

One way to avoid these closures is the implementation

of zero-emissions credits – payments made to electricity

producers where electricity is generated without greenhouse

gas emissions – which are in place in New York,

Illinois, and New Jersey.

Inside Nuclear with NucNet

How Nuclear Industry Can Solve ‘ Fundamental Obstacle’ of High Capital Cost ı November/December


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Another proposal is that governments support

development and demonstration of new nuclear technologies

through four funding “levers”: funding to share

regulatory licensing costs; funding to share research and

development costs; funding for the achievement of specific

technical milestones; and funding for production credits to

reward successful demonstration of new designs.

Unless nuclear energy is incorporated into the global

mix of low-carbon energy technologies with the help of

new government policies, the challenge of climate change

will be much more difficult and costly to solve, the report

concluded.

According to MIT, over 80 % of the energy used in the

world comes from fossil fuels and despite all the talk about

switching to alternative energy sources, CO 2 emissions are

on the rise.

“The magnitude of the challenge we are facing in

decarbonising the world’s energy supply is enormous”,

Mr Buongiorno said.

“This means we must have as many energy options on

the table as possible because we cannot succeed using just

one technology type.”

The report is online:

http://bit.ly/2x3yvNt

DATF EDITORIAL NOTES

571

Notes

Public Opinion About

the Loss of Competence

Only limited concern about loss of competence: Asked about their

possible concern with regard to the loss of knowledge on the safety

of nuclear power plants in Germany after nuclear phase-out and in

view of future German capabilities to rate the safety level of foreign

NPPs, a relative majority is not concerned. The relatively high

percentage of persons that cannot decide for either position shows

that their opinion on the issue is not stable. This is often the case

with issues the citizens have not or only hardly dealt with and thus

do not consider it possible to judge on the issue.

East-Germans are more concerned than West-Germans, men

more than women. This might be due to differences in the basic

opinion on nuclear power. The surveys of past decades showed

repeatedly that East-Germans and men are more open to nuclear

than West-Germans and men respectively.

Question: Some time ago, Germany decided to phase out nuclear

energy entirely until 2022. We have two persons talking about this

topic. Who of the two says what comes close to what is your opinion?

Person one: “I’m concerned, that Germany will lose precious

knowledge and experience regarding to the operation of nuclear

power plants. Then, Germany will not be able anymore to rate the

safety standards of foreign nuclear power plants.”

Person two: “I do think differently. When there will be no more use

of nuclear power plants in Germany, we don’t need experience in

operation of nuclear power plants. The safety standards can well be

rated by local experts. Therefore, I am not concerned.”

Not concerned

Concerned

Undecided, no opinion

25 %

36 %

39 %

Public Opinion About Euratom

A large majority thinks Euratom Treaty is reasonable: There is a

broad consensus in the population that European safety cooperation

in the area of nuclear energy is important. Accordingly, 72 per cent

think that the Euratom Treaty makes sense. Only 9 per cent have the

opposing opinion, that it would be better if every European country

would deal with the issue on its own.

Question: The Euratom Treaty has established a safety cooperation

in the field of nuclear energy on the European level for more than

60 years. Do you consider this kind of cooperation to be reasonable,

or should the respective countries regulate this on their own?

19 %

Undecided,

no opinion

72 %

Reasonable

9 %

On their own

Are you interested in more information

on Euratom? DAtF published a new

booklet about Euratom (in German).

Please check www.kernenergie.de.

Results of a public

opinion survey

carried out in

October 2018 by

Institut für

Demoskopie

Allensbach

commissioned by

DAtF. The survey is

based on a total of

1.236 Face-to-Face-

Interviews with a

representative

cross section of

the population

from age 16. The

interviews were

conducted between

11 and 27 October

2018.

For further details

please contact:

Nicolas Wendler

DAtF

Robert-Koch-Platz 4

10115 Berlin

Germany

E-mail: presse@

kernenergie.de

www.kernenergie.de

DAtF Notes


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Calendar

572

CALENDAR

2018

03.12.-14.12.2018

United Nations, Conference of the Parties –

COP24. Katowice, Poland, United Nations

Framework Convention on Climate Change –

UNFCCC, www.cop24.katowice.eu

03.12.-04.12.2018

IGD-TP Exchange Forum 8 – Radioactive Waste

Management (EURAD). Berlin, Germany, German

Federal Ministry for Economic Affairs and Energy

(BMWi), igdtp.eu/event/igd-tp-exchange-forum-8/

06.12.2018

Nuclear 2018. London, United Kingdom, Nuclear

Industry Association (NIA), www.niauk.org

10.12.-12.12.2018

Toronto Global Forum: Navigating a World in

Disruption. Toronto, Canada, forum-americas.org

10.12.-11.12.2018

Symposium zum neuen deutschen Strahlenschutzrecht.

Aschaffenburg, Germany,

Fachverband für Strahlenschutz e. V., fs-ev.org

2019

07.01.-08.01.2019

ICNPPS 2019 – 21 st International Conference

Nuclear Power Plant Systems. Tokyo, Japan,

World Academy of Science, Engineering and

Technology, waset.org

15.01.2019

Nuclear Fuel Supply Forum. Washington DC, USA,

Nuclear Energy Institute (NEI), www.nei.org

21.01.-22.01.2019

Uranium Science. Bristol, Unitd Kingdom, University

of Bristol, Royal Academy of Engineering, IAC,

uranium-science.tumblr.com

28.01.-29.01.2019

5 th Central & Eastern Europe Nuclear Industry

Congress 2019. Prague, Czech Republic,

www.szwgroup.com

05.02.-07.02.2019

Nordic Nuclear Forum. Helsinki, Finland, FinNuclear,

www.finnuclear.fi, nordicnuclearforum.fi

20.02.-22.02.2019

ips – International Power Summit 2019.

Berlin, Germany, bit.ly/2kQk2LU

12.02.-14.02.2019

The annual Nuclear Deterrence Summit.

Arlington, VA, USA, Access Intelligence,

www.deterrencesummit.com

20.02.-21.02.2019

Nuclear Decommissioning & Waste Management

Summit 2019. London, United Kingdom, ACI,

www.wplgroup.com/aci/event/nucleardecommissioning-waste-management-summit/

25.02.-26.02.2019

Symposium Anlagensicherung. Hamburg,

Germany, TÜV NORD Akademie, www.tuev-nord.de

03.03.-07.03.2019

WM Symposia – WM2019. Phoenix, AZ, USA.

www.wmsym.org

05.03.-06.03.2019

VI. International Power Plants Summit.

Istanbul, Turkey, INPPS Fair,

www.nuclearpowerplantssummit.com

10.03.-15.03.2019

83. Annual Meeting of DPG and DPG Spring

Meeting of the Atomic, Molecular, Plasma Physics

and Quantum Optics Section (SAMOP),

incl. Working Group on Energy. Rostock, Germany,

Deutsche Physikalische Gesellschaft e.V.,

www.dpg-physik.de

10.03.-14.03.2019

The 9 th International Symposium On

Supercritical- Water-Cooled Reactors (ISSCWR-9).

Vancouver Marriott Hotel, Vancouver, British

Columbia, Canada, Canadian Nuclear Society (CNS),

www.cns-snc.ca

11.03.-13.03.2019

18 th Workshop of the European ALARA Network:

ALARA in Decommissioning and Site Remediation.

Marcoule, France, European ALARA Network

www.eu-alara.net

11.03.-12.03.2019

Carnegie International Nuclear Policy Conference.

Washington D.C., U.S.A., Carnegie Endownment for

International Peace, carnegieendowment.org

11.03.-15.03.2019

RaPBA-training course. Jülich, Germany,

Forschungszentrum Jülich GmbH, www.fz-juelich.de

24.03.-28.03.2019

RRFM 2019 – 2019 the European Research

Reactor Conference. Jordan, IGORR,

the Inter national Group Operating Research

Reactors and European Nuclear Society (ENS),

www.euronuclear.org

25.03.-27.03.2019

Cyber Security Implementation Workshop.

Boston MA, USA, Nuclear Energy Institute (NEI),

www.nei.org

01.04.-03.04.2019

CIENPI – 13 th China International Exhibition on

Nuclear Power Industry. Beijing, China,

Coastal International, www.coastal.com.hk

09.04.-11.04.2019

World Nuclear Fuel Cycle 2019. Shanghai, China,

World Nuclear Association (WNA),

www.world-nuclear.org

07.05.-08.05.2019

50 th Annual Meeting on Nuclear Technology

AMNT 2019 | 50. Jahrestagung Kerntechnik.

Berlin, Germany, DAtF and KTG,

www.nucleartech-meeting.com – Register Now!

15.05.-17.05.2019

1 st International Conference of Materials,

Chemistry and Fitness-For-Service Solutions

for Nuclear Systems. Toronto, Canada, Canadian

Nuclear Society (CNS), www.cns-snc.ca

16.05.-17.05.2019

Emergency Power Systems at Nuclear Power

Plants. Munich, Germany, TÜV SÜD,

www.tuev-sued.de/eps-symposium

24.05.-29.05.2019

International Topical Workshop on Fukushima

Decommissioning Research – FDR2019.

Fukushima, Japan, The University of Tokyo,

fdr2019.org

03.06.-05.06.2019

Nuclear Energy Assembly. Washington DC, USA,

Nuclear Energy Institute (NEI), www.nei.org

04.06.-07.06.2019

FISA 2019 and EURADWASTE ‘19. 9 th European

Commission Conferences on Euratom Research

and Training in Safety of Reactor Systems and

Radioactive Waste Management. Pitesti, Romania,

www.nucleu2020.eu

24.06.-26.06.2019

2019 International Conference on the Management

of Spent Fuel from Nuclear Power Reactors.

Vienna, Austria, International Atomic Energy Agency

(IAEA), www.iaea.org

23.06.-27.06.2019

World Nuclear University Summer Institute.

Romania and Switzerland, World Nuclear University,

www.world-nuclear-university.org

21.07.-24.07.2019

14 th International Conference on CANDU Fuel.

Mississauga, Ontario, Canada, Canadian Nuclear

Society (CNS), www.cns-snc.ca

28.07.-29.07.2019

Radiation Protection Forum. Memphis TN, USA,

Nuclear Energy Institute (NEI), www.nei.org

04.08.-09.08.2019

PATRAM 2019 – Packaging and Transportation

of Radioactive Materials Symposium.

New Orleans, LA, USA. www.patram.org

21.08.-30.08.2019

Frédéric Joliot/Otto Hahn (FJOH) Summer School

FJOH-2019 – Innovative Reactors: Matching the

Design to Future Deployment and Energy Needs.

Karlsruhe, Germany, Nuclear Energy Division

of Commissariat à l’énergie atomique et aux

énergies alternatives (CEA) and Karlsruher Institut

für Technologie (KIT), www.fjohss.eu

04.09.-06.09.2019

World Nuclear Association Symposium 2019.

London, UK, World Nuclear Association (WNA),

www.wna-symposium.org

04.09.-05.09.2019

VGB Congerss 2019 – Innovation in Power

Generation. Salzburg, Austria, VGB PowerTech e.V.,

www.vgb.org

08.09.-11.09.2019

4 th Nuclear Waste Management,

Decommissioning and Environmental Restoration

(NWMDER). Ottawa, Canada, Canadian Nuclear

Society (CNS), www.cns-snc.ca

09.09.-12.09.2019

24 th World Energy Congress. Abu Dhabi, UAE,

www.wec24.org

09.09.-12.09.2019

Jahrestagung 2019 – Fachverband für

Strahlenschutz | Strahlenschutz und Medizin.

Würzburg, Germany, www.fs-ev.org

22.10.-25.10.2019

SWINTH-2019 Specialists Workshop on Advanced

Instrumentation and Measurement Techniques

for Experiments Related to Nuclear Reactor

Thermal Hydraulics and Severe Accidents.

Livorno, Italy, www.nineeng.org/swinth2019/

23.10.-24.10.2019

Chemistry in Power Plants. Würzburg, Germany,

VGB PowerTech e.V., www.vgb.org

27.10.-30.10.2019

FSEP CNS International Meeting on Fire Safety

and Emergency Preparedness for the Nuclear

Industry. Ottawa, Canada, Canadian Nuclear Society

(CNS), www.cns-snc.ca

Calendar


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Should Nuclear Energy Play a Role

in a Carbon-Constrained World?

Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti

The Big Picture Access to electricity plays a vital role in improving standards of living, education, and health. This

relationship is illustrated by Figure 1, which locates various countries according to their score on the Human

Development Index, a well-known metric of economic and social development, and per capita electricity use. As

countries develop, electricity use tends to rise; according to current forecasts, electricity consumption in developing

non-OECD (Organisation for Economic Co-operation and Development) countries is expected to grow 60 % by 2040,

whereas worldwide use is expected to grow 45 % in the same timeframe (U.S. Energy Information Agency, 2017).

| | Fig. 1.

Human Development Index versus per capita electricity consumption for

different countries (United Nations Development Programme, 2017)

Expanding access to energy while at the same time drastically

reducing the emissions of greenhouse gases that cause

global warming and climate change is among the central

challenges confronting humankind in the 21 st century. This

study focuses on the electric power sector, which has been

identified as an early target for deep decarbonization. In

the foreseeable future, electricity will continue to come

primarily from a mix of fossil fuels, hydro power, variable

renewables such as solar and wind, and nuclear energy

(U.S. Energy Information Agency, 2017). At present nuclear

energy supplies about 11 % of the world’s electricity and

constitutes a major fraction of all low-carbon electricity

generation in the United States, Europe, and globally

(Figure 2). Nuclear energy’s future role, however, is highly

uncertain for several reasons: chiefly, escalating costs and,

to a lesser extent, the per sistence of historical challenges

such as spent fuel disposal and concerns about nuclear

plant safety and nuclear weapons proliferation.

| | Fig. 2.

Share of carbon-free electricity sources in several major economies and

worldwide (International Energy Agency, 2017)

The Nuclear Energy Landscape

Since MIT published its first Future of Nuclear Power study

[Deutch, et al., 2003], the context for nuclear energy in the

United States and globally has changed dramatically.

Throughout most of the 2000s, the U.S. fleet of nuclear

power plants was highly profitable: their capital costs had

been largely amortized over previous decades and their

production costs were low compared to the relatively high

cost of fossil and renewable alternatives. As utilities sought

to maximize the value of their nuclear assets, they

embarked on a flurry of market-driven nuclear power plant

purchases, power uprates, and license extensions. The

situation changed quickly after 2007, as large quantities of

inexpensive shale natural gas became available in the

United States and the Great Recession depressed electricity

demand and prices. Since then, nuclear power plants in

the United States have become steadily less profitable and

the industry has witnessed a wave of plant closures. Two

recent examples include the Kewaunee plant in Wisconsin,

which shut down in 2013 [Dotson, 2014], and the Fort

Calhoun plant in Nebraska, which shut down in 2016

[ Larson, A., 2016]. Both plants shut down because they

could not compete with cheaper generation options.

Similarly, falling natural gas prices in Europe and Asia

have put more economic pressure on nuclear power in

those regions also.

While the U.S. nuclear industry remains exceptionally

proficient at operating the existing fleet of power plants, its

handling of complex nuclear construction projects has

been abysmal, as exemplified by the mismanagement of

component-replacement projects at the San Onofre

[Mufson, 2013] and Crystal River [Penn, 2013] plants,

which led to the premature closure of both plants in 2013.

Other projects, including the troubled Vogtle [Proctor, D.,

2017] and V. C. Summer [Downey, 2017] expansion

projects, have experienced soaring costs and lengthy

schedule delays. In the case of Vogtle and V.C. Summer,

costs doubled and construction time increased by more

than three years, causing the reactor supplier Westinghouse

[Cardwell & Soble, 2017] to declare bankruptcy

(Westinghouse only began emerging from Chapter 11 protection

in 2018) [Hals & DiNapoli, 2018]. The V. C. Summer

project was ultimately abandoned in 2017 [Plumer, 2017].

New nuclear plant construction projects by French

reactor suppliers Areva and EDF at Olkiluoto (Finland)

[Rosendahl & Forsell, 2017], Flamanville (France) [Reuters,

2018], and Hinkley Point C (United Kingdom) [BBC News,

2017], have suffered similarly severe cost escalation and

delays. Clearly, the goal of deploying new nuclear power

plants at an overnight capital cost of less than $2,000 per

electric kilowatt, as claimed by the North American and

573

ENERGY POLICY, ECONOMY AND LAW

Energy Policy, Economy and Law

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENERGY POLICY, ECONOMY AND LAW 574

European nuclear industries in the 2000s [Winters,

Corletti, & Thompson, 2001] (The Economics of Nuclear

Power, 2008), turned out to be completely unrealistic.

New nuclear plant construction (International Atomic

Energy Agency, 2017) has con tinued at a steady rate in

countries like South Korea, China, and Russia; construction

has also recently started in the Middle East. Many

of these projects have been completed more or less on

time, and likely at significantly lower cost than comparable

projects in the West, although it is often challenging to

independently validate the cost figures published in these

countries.

In 2011, the combined effects of a massive earthquake

and tsunami triggered an accident at the Fukushima

Daiichi nuclear power plant in Japan and led to an unfortunate

decision by Japanese authorities to force the evacuation

of nearly 200,000 people from the region surrounding

the site. This event renewed public concerns about the

safety of nuclear installations. Although the radiological

consequences of the accident have been minimal (United

Nations Scientific Committee on the Effects of Atomic

Radiation, 2017), by 2012 the entire nuclear fleet in Japan

was tempo rarily shut down, and only a handful of nuclear

plants are currently back online in that country. In the

wake of Fukushima, five countries (Germany, Switzerland,

Belgium, Taiwan, and South Korea) (World Nuclear

Association, 2017) announced their intention to ultimately

phase out nuclear energy, though to date only Germany

has taken immediate action toward actually implementing

this policy.

Against this bleak backdrop, some opportunities have

nonetheless emerged for the nuclear energy industry.

Heightened awareness of the social, economic, and

environmental risks of climate change and air pollution

has provided a powerful argument for maintaining and

potentially increasing nuclear energy’s share of the global

energy mix [Hansen, Emanuel, Caldeira, & Wigley, 2015].

Private investors appear interested in developing and

deploying advanced reactor technologies [Brinton, 2015],

defined here as light- water-cooled small modular reactors

(SMRs) and non-water-cooled reactors (Generation-IV

systems), even as the readiness of these technologies

has significantly increased in the past 15 years [ANL-INL-

ORNL, 2016] (Generation-IV International Forum, 2014).

Finally, there seems to be bipartisan support in the

U.S. Congress for renewed American leadership in commercializing

new nuclear technology [115 th U.S. Congress,

2017-2018].

The New MIT Study

In light of the important changes that have occurred in the

past 15 years, coupled with the existential challenges that

now confront the nuclear industry, we concluded that

it was time to conduct a new interdisciplinary study

analyzing the future prospects of nuclear energy in the

U.S. and internationally. The objective of this paper is to

summarize the key findings of the study. The reader is

encouraged to examine the full study report [Buongiorno

& al., 2018] for a detailed discussion and justification of

the findings.

We have examined the challenge of drastically reducing

emissions of greenhouse gases in the electricity sector,

which has been widely identified as an early candidate for

deep decarbonization. In most regions, serving projected

electricity demand in 2050 while simultaneously reducing

emissions will require a mix of electrical generation assets

| | Fig. 3.

(Left) average system cost of electricity (in $/MWh e ) and (right) nuclear installed capacity (% of peak demand) in the New England region of the United States and

the Tianjin-Beijing-Tangshan (T-B-T) region of China for different carbon constraints (gCO 2 /kWh e ) and three scenarios of various available technologies in 2050:

(a) no nuclear allowed, (b) nuclear is allowed at nominal overnight capital cost ($5,500 per kW e for New England and $2,800 per kW e for T-B-T), and (c) nuclear is

allowed with improved overnight capital cost ($4,100 per kWe for New England and $2,100 per kW e for T-B-T). Simulations were performed with an MIT system

optimization tool called GenX. For a given power market the required inputs include hourly electricity demand, hourly weather patterns, economic costs (capital,

operations, and fuel) for all power plants (nuclear, wind and solar with battery storage, fossil with and without carbon capture and storage), and their ramp-up

rates. The GenX simulations were used to identify the electrical system generation mix that minimizes average system electricity costs in each of these markets.

The cost escalation seen in the no-nuclear scenarios with aggressive carbon constraints is mostly due to the additional build-out and cost of energy storage, which

becomes necessary in scenarios that rely exclusively on variable renewable energy technologies. The current world-average carbon intensity of the power sector is

about 500 grams of CO 2 equivalent per kilowatt hour (g/kWh e ); according to climate change stabilization scenarios developed by the International Energy Agency

in 2017, the power-sector carbon intensity targets to limit global average warming to 2°C range from 10 to 25 g/kWh e by 2050 and less than 2 g/kWh e by 2060.

Energy Policy, Economy and Law

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


atw Vol. 63 (2018) | Issue 11/12 ı November/December

that is different from the current system. While a variety of

low- or zero-carbon technologies can be employed in

various combinations, our analysis shows the potential

contribution nuclear can make as a dispatchable lowcarbon

technology. Without that contribution, the cost of

achieving deep decarbonization targets increases significantly

(see Figure 3, left column). The least-cost portfolios

include an important share for nuclear, the magnitude of

which significantly grows as the cost of nuclear drops

( Figure 3, right column).

In all the scenarios we analyzed, a certain flexibility

in operations is required from the dispatchable power

generators, because of the presence of variable renew ables

on the grid. Nuclear plants were traditionally designed for

baseload operation, but, as has been recently demonstrated

in Europe and the United States [Jenkins & al., 2018],

nuclear plants can adapt to provide load-following generation

and many advanced reactor concepts are being

designed for that capability as well.

A key consideration is whether the deployment of

low-carbon energy technologies like renewables or nuclear

can be accomplished in the timeframe needed to substantially

displace fossil fuels by 2050. Rapid deployment by

that date is critical to achieve current international climate

mitigation goals. In many countries, solar and wind have

achieved notable levels of penetration in electricity generation

markets over the last decade, and this trend is expected

to continue. However, our analysis indicates that, historically,

large-scale increases in low-carbon generation

have occurred most rapidly in connection with additions of

nuclear power (Figure 4).

Nuclear energy does provide other benefits in addition

to its low-carbon attribute. For example, it reduces air

pollution associated with electricity production; it contributes

to fuel diversification and grid stability, has low

land requirements, and creates well-paid jobs. These

benefits are important in certain contexts; for example,

nuclear energy may be attractive in regions that do not

have enough land or suitable weather patterns for largescale

deployment of renewables, or in countries that are

seeking to reduce coal use to improve air quality, or that

are concerned about the security and reliability of their

energy supply. However, we believe that the primary,

generally applicable attribute of nuclear energy that may

justify its future growth on a global scale is its low-carbon

nature. As such, special consideration should be given to

preserving the existing nuclear power plant fleet in the

U.S. and internationally, as it constitutes a bridge to the

future in terms of emission avoidance (as recognized in

recent legislation adopted by the U.S. states of New York

[Larson, A., 2016], Illinois [Anderson, 2016], and New

Jersey [Sethuraman, 2018]), and expertise essential for

the operation of the future nuclear systems.

Despite the promise highlighted by our analyses, the

prospects for the expansion of nuclear energy remain

decidedly dim in many parts of the world. The fundamental

problem is cost. Other generation technologies

have become cheaper in recent decades, while new nuclear

plants have only become costlier. This disturbing trend

undermines nuclear energy’s potential contribution and

increases the cost of achieving deep decarbonization. In

the MIT study, we have examined what is needed to arrest

and reverse that trend.

We have surveyed recent light water reactor (LWR)

construction projects around the world and examined

recent advances in crosscutting technologies that can be

applied to nuclear plant construction for a wide range of

| | Fig. 4.

Electricity growth (kWh per year per capita) based on actual data for added power capacity in various

countries. Assumes 90 % capacity factor for dispatchable energy sources (nuclear, natural gas, coal) and

the following capacity factors for wind/solar: Germany 19 %/9 %; Spain 25 %/33 %; Denmark 26 %/7 %

(based on historical record for best 10-year period).

advanced nuclear plant concepts and designs under

development. To address cost concerns, we recommend:

(1) An increased focus on using proven project/construction

management practices to increase the

probability of success in the execution and delivery

of new nuclear power plants.

The recent experience of nuclear construction projects

in the United States and Europe has demonstrated

repeated failures of construction management practices

in terms of their ability to deliver products on time and

within budget. Several corrective actions are urgently

needed: (a) completing greater portions of the detailed

design prior to construction; (b) using a proven supply

chain and skilled workforce; (c) incorporating manufacturers

and builders into design teams in the early

stages of the design process to assure that plant systems,

structures, and components are designed for efficient

construction and manufacturing to relevant standards;

(d) appointing a single primary contract manager with

proven expertise in managing multiple independent

subcontractors; (e) establishing a contracting structure

that ensures all contractors have a vested interest in the

success of the project; and (f) enabling a flexible

regulatory environment that can accommodate small,

unanticipated changes in design and construction in a

timely fashion.

(2) A shift away from primarily field construction of

cumbersome, highly site-dependent plants to more

serial manufacturing of standardized plants.

Opportunities exist to significantly reduce the capital

cost and shorten the construction schedule for new

nuclear power plants. First, the deployment of multiple,

standardized units, especially at a single site, affords

considerable learning from the construction of each

unit. In the United States and Europe, where productivity

at construction sites has been low, we also recommend

expanded use of factory production to take

advantage of the manufacturing sector’s higher productivity

when it comes to turning out complex systems,

structures, and components. The use of an array of

cross-cutting technologies, including modular construction

in factories and shipyards, advanced concrete

solutions (e.g., steel-plate composites, high-strength

reinforcement steel, ultra-high performance concrete),

seismic isolation technology, and advanced plant layouts

(e.g., embedment, offshore siting), could have

positive impacts on the cost and schedule of new

ENERGY POLICY, ECONOMY AND LAW 575

Energy Policy, Economy and Law

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENERGY POLICY, ECONOMY AND LAW 576

nuclear power plant construction. For less complex

systems, structures, and components, or at sites where

construction productivity is high (as in Asia), conventional

approaches may be the lowest-cost option.

We emphasize the broad applicability of these recommendations

across all reactor concepts and designs. Costcutting

opportunities are pertinent to evolutionary

Generation-III LWRs, SMRs, and Generation-IV reactors.

Without design standardization and innovations in

construction approaches, we do not believe the inherent

technological features of any of the advanced reactors

will produce the level of cost reductions needed to make

nuclear electricity competitive with other generation

options.

In addition to its high cost, the growth of nuclear energy

has been hindered by public concerns about the

consequences of severe accidents (such as occurred at

Fukushima, Japan in 2011) in traditional Generation-II

nuclear power plant designs. These concerns have led

some countries to renounce nuclear power entirely. To

address safety concerns, we recommend:

(3) A shift toward reactor designs that incorporate

inherent and passive safety features.

Core materials that have high chemical and physical

stability, high heat capacity, negative reactivity feedbacks,

and high retention of fission products, together

with engineered safety systems that require limited or

no emergency AC power and minimal external intervention,

will likely make operations simpler and more

tolerable to human errors. Such design evolution has

already occurred in some Generation-III LWRs and is

exhibited in new plants built in China, Russia, and the

United States. Passive safety designs can reduce the

probability that a severe accident occurs, while also

mitigating the offsite consequences in the event an

accident does occur. Such designs can also ease the

licensing of new plants and accelerate their deployment

in developed and developing countries. We judge

that advanced reactors like LWR-based SMRs (e.g.,

NuScale) and mature Generation-IV reactor concepts

(e.g., high-temperature gas reactors and sodium-cooled

fast reactors) also possess such features and are now

ready for commercial deployment. Further, our assessment

of the U.S. and international regulatory environments

suggests that the current regulatory system is

flexible enough to accommodate licensing of these

advanced reactor designs. Certain modifications to the

current regulatory framework could improve the

efficiency and efficacy of licensing reviews.

Lastly, key actions by policy makers are also needed to

capture the benefits of nuclear energy:

(4) Decarbonization policies should create a level

playing field that allows all low-carbon generation

technologies to compete on their merits.

Investors in nuclear innovation must see the possibility

of earning a profit based on selling their products at full

value, which should include factors such as the value of

reducing CO 2 emissions that are external to the market.

Policies that foreclose a role for nuclear energy discourage

investment in nuclear technology, may raise

the cost of decarbonization and slow progress toward

climate change mitigation goals. Germany’s own

experience with its Energiewende illustrates the

difficulty. Despite a massive investment in renewables,

greenhouse gas emissions from the electricity sector

have declined less than 20 % between 2007 and

2017 (German Environment Agency, 2017). Increased

generation from renewables has to a significant degree

been used to replace nuclear instead of reducing

emissions. Consequently, the government has

acknowledged that current measures are unlikely to

achieve the overall 40 % emissions reduction target by

2020 ( German Environment Agency, 2018). A more

effective approach in Germany and elsewhere would

seek to incorporate CO 2 emissions costs into the price of

electricity and thus allow for more equitable recognition

of the value of all climate-friendly energy technologies,

such as nuclear, hydro, wind, solar, and even fossil fuels

with carbon capture.

Historically, time-to-market and development costs for

new nuclear reactors have been too high, making them

fundamentally unattractive to private investors, and

leading some to advocate for direct government involvement

in the development of these technologies (Secretary

of Energy Advisory Board, 2016). Prototype Generation-IV

systems are currently being explored by the governments

of several countries, including China, which has deployed

high-temperature gas-cooled reactors (HTGRs) [Zhang &

al., 2016], Russia [Digges, 2016], and India [Patel, 2017],

both of which have deployed sodium-cooled fast reactors

(SFRs). For the U.S. and other market-oriented countries

we recommend an important, albeit more limited, role for

governments in the development and deployment of new

nuclear technologies, as follows:

(5) Governments should establish reactor sites where

companies can deploy prototype reactors for testing

and operation oriented to regulatory licensing.

Such sites should be open to diverse reactor concepts

chosen by the companies that are interested in testing

prototypes. The government should provide appropriate

supervision and support – including safety

protocols, infrastructure, environmental approvals,

and fuel-cycle services – and should also be directly

involved with all testing.

(6) Governments should establish funding programs

around prototype testing and commercial deployment

of advanced reactor designs using four

levers: (a) funding to share regulatory licensing

costs, (b) funding to share research and development

costs, (c) funding for the achievement of

specific technical milestones, and (d) funding for

initial new design prototypes or first-of-a-kind

reactors.

The MIT study did not address the disposal of radioactive

waste (or, more properly, spent nuclear fuel) or proliferation

risks. While these issues are universally considered

barriers to the expansion of nuclear energy use,

the political dimensions of finding solutions to waste

disposal and managing proliferation risks far outweigh the

technical challenges. We have reviewed recent studies of

the nuclear fuel cycle that focused on the management and

disposal of spent fuel (Blue Ribbon Commission on

America’s Nuclear Future, 2011) [Kazimi, et al., 2011]

[Wigeland & al., 2014] and have found their recommendations

to be valid. Briefly, there exist robust technical

solutions for spent fuel management, such as interim

storage in dry casks and permanent disposal in geological

repositories with excavated tunnels or deep boreholes –

the greater difficulty, historically, has been siting such

facilities. But the evidence suggests that these solutions

can be implemented through a well-managed, consensusbased

decision-making process, as has been demonstrated

in Finland (Fountain, 2017) and Sweden [Plumer, 2012].

Domestically, the U.S. government should follow th ese

Energy Policy, Economy and Law

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


atw Vol. 63 (2018) | Issue 11/12 ı November/December

examples and swiftly move on the recommendations for

spent fuel management that have been put before it.

The question of nuclear materials proliferation is more

complex. Adopting certain fuel cycle facilities such as

international fuel banks and centralized spent fuel repositories

can make the civilian nuclear fuel cycle unattractive

as a path to gaining nuclear weapons materials or

capability. At the same time, there is a desire on the part of

established nuclear countries to supply nuclear technologies

to newcomer countries, both because it constitutes

a business opportunity and as a means to gain considerable,

decades-long geopolitical influence in key

regions of the world. Currently Russia and, to a lesser

extent, China are aggressively pursuing opportunities to

supply nuclear energy technology to other countries. Some

have argued that if the United States and Western Europe

wish to pursue such opportunities and advance other

geo-political objectives while simultaneously sustaining

the non-proliferation and safety norms they has advocated

around the world, they have a compelling interest in maintaining

a robust domestic nuclear industry [Moniz, 2017]

(Center for Strategic and International Studies, 2018)

[Aumeier & Allen, 2008].

Conclusions

Based on the findings that emerged from this study, we

contend that, as of today and for decades to come, the

main value of nuclear energy lies in its potential contribution

to decarbonizing the power sector. Further, we

conclude that cost is the main barrier to fully realizing this

value. Without cost reductions, nuclear energy will not

play a significant role. We find that that there are ways to

reduce nuclear energy’s cost, which the industry must

pursue aggressively and expeditiously. Lastly, we recognize

that government help, in the form of well-designed energy

and environmental policies and appropriate assistance in

the early stages of new nuclear system deployment, is

needed to realize the full potential of nuclear.

Acknowledgements

The study was conducted by a multidisciplinary team of

over twenty faculty, students and consultants, led by the

four authors of this paper. The study report can be

downloaded at the MIT Energy initiative website (https://

energy.mit.edu/research/future-nuclear-energy-carbonconstrained-world/).

We gratefully acknowledge the support

of our major sponsor The Alfred P. Sloan Foundation

and important contributions from Shell, Électricité de

France (EDF), The David and Lucile Packard Foundation,

General Atomics, the Anthropocene Institute, MIT’s

International Policy Laboratory, Mr. Zach Pate, Mr. Neil

Rasmussen, and Dr. James Del Favero. We also thank the

Idaho National Laboratory, Dominion Engineering Inc.,

Blumont Engineering Solutions, Professor Giorgio Locatelli

from the University of Leeds, the Breakthrough Institute,

and Lucid Strategy for their generous in-kind contributions.

References

| | 115 th U.S. Congress. (2017-2018). Nuclear Energy Innovation

Capabilities Act / Advanced Nuclear Energy Technologies Act.

| | Anderson, J. (2016). Illinois governor signs energy bill to keep

nuclear plants open, boost renewables. Retrieved from American

Public Power Association: https://www.publicpower.org/

periodical/article/illinois-governor-signs-energy-bill-keepnuclear-plants-open-boost-renewables

| | ANL-INL-ORNL. (2016). Advanced Demonstration and Test

Reactor Options, INL/EXT-16-37867, Rev. 1.

| | Aumeier, S., and Allen, T. (2008, Winter). How to Reinvigorate

U.S. Commercial Nuclear Energy. Issues in Science and

Technology.

| | BBC News. (2017). Hinkley Point: EDF adds £ 1.5bn to nuclear

plant cost. Retrieved from BBC News: https://www.bbc.com/

news/business-40479053

| | Blue Ribbon Commission on America’s Nuclear Future. (2011).

Report to the Secretary of Energy.

| | Brinton, S. (2015). The Advanced Nuclear Industry. Retrieved

from Third Way: https://www.thirdway.org/report/

the-advanced-nuclear-industry

| | Buongiorno, J. et al. (2018), The Future of Nuclear Energy in a

Carbon-Constrained World. MIT.

| | Cardwell, D., & Soble, J. (2017). Westinghouse Files for

Bankruptcy, in Blow to Nuclear Power. Retrieved from The New

York Times: https://www.nytimes.com/2017/03/29/business/

westinghouse-toshiba-nuclear-bankruptcy.html

| | Center for Strategic and International Studies. (2018). Assessing

the 2018 Nuclear Posture Review. Retrieved from https://www.

csis.org/events/assessign-2018-nuclear-posture-review

| | Deutch, J., Moniz, E., Ansolabehere, S., Driscoll, M., Gray, P.,

Holdren, J., Todreas, N. (2003). The Future of Nuclear Power. MIT.

| | Digges, C. (2016, November). Russia’s newest breeder reactor

goes into commercial operation. Bellona.org.

| | Dotson, S. (2014). Lessons Learned from Kewaunee’s Closing.

Retrieved from Power Engineering: https://www.powereng.com/articles/npi/print/volume-7/issue-3/nucleus/lessonslearned-from-kewaunee-s-closing.html

| | Downey, J. (2017). Guarantee may not be enough to save

troubled V.C. Summer nuclear project. Retrieved from Charlotte

Business Journal: https://www.bizjournals.com/charlotte/

news/2017/07/27/toshiba-guaranty-may-not-be-enoughto-save-the.html

| | Fountain, H. (2017, June 9). On Nuclear Waste, Finland shows

U.S. how it can be done. The New York Times.

| | Generation-IV International Forum. (2014). Technology

Roadmap Update for Generation-IV Nuclear Energy Systems.

| | German Environment Agency. (2017). National Inventory

Reports for the German Greenhouse Gas Inventory 1990 to

2016 (as of 01/2018) and initial forecast for 2017.

| | German Environment Agency. (2018). Press Release. August

2018.

| | Hals, T., and DiNapoli, J. (2018). Westinghouse reaches deal to

resolve bankruptcy. Retrieved from Reuters: https://

www.reuters.com/article/us-toshiba-accountingwestinghouse-bankr/exclusive-westinghouse-reaches-deal-to-resolve-bankruptcy-sources-idUSKBN1F62WG

| | Hansen, J., Emanuel, K., Caldeira, K., and Wigley, T. (2015).

Nuclear power paves the only viable path forward on climate

change. Retrieved from The Guardian: https://

www.theguardian.com/environment/2015/dec/03/nuclearpower-paves-the-only-viable-path-forward-on-climate-change

| | International Atomic Energy Agency. (2017). The Database on

Nuclear Power Reactors. Retrieved from Power Reactor

Information System: https://www.iaea.org/pris

| | International Energy Agency. (2017). Retrieved from

https://www.iea.org

| | Jenkins, J., et al. (2018). The benefits of nuclear flexibility in

power system operations with renewable energy.

Applied Energy (222), 872-884.

| | Kazimi, M., Moniz, E., Forsberg, C., Ansolabehere, S., Deutch, J.,

Driscoll, M., Regalbuto, M. (2011). The Future of the Nuclear Fuel

Cycle. MIT.

| | Larson, A. (2016). N.Y. Approves Nuclear Subsidies and Mandates

50 % Renewables by 2030. Retrieved from Power: http://

www.powermag.com/n-y-approves-nuclear-subsidies-andmandates-50-renewables-by-2030

| | Larson, A. (2016). Sweet Dreams Fort Calhoun Nuclear Plant.

Retrieved from Power: http://www.powermag.com/

sweet-dreams-fort-calhoun-nuclear-plant

| | Moniz, E. (2017). The U.S. Nuclear Energy Enterprise: A Key

National Security Enabler. Energy Futures Initiative.

ENERGY POLICY, ECONOMY AND LAW 577

Energy Policy, Economy and Law

Should Nuclear Energy Play a Role in a Carbon-Constrained World? ı Jacopo Buongiorno, Michael Corradini, John Parsons and David Petti


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENERGY POLICY, ECONOMY AND LAW 578

| | Mufson, S. (2013). San Onofre nuclear power plant to shut down.

Retrieved from The Washington Post: https://www.washingtonpost.com/business/economy/san-onofre-nuclear-power-plantto-shut-down

| | Patel, S. (2017). India Gears up to Expand Fast Breeder Reactor

Fleet. Retrieved from Power Magazine: http://www.powermag.

com/india-gears-up-to-expand-fast-breeder-reactor-fleet

| | Penn, I. (2013). Duke Energy announces closing of Crystal River

nuclear power plant. Retrieved from Tampa Bay Times:

http://www.tampabay.com/news/business/energy/

duke-energy-announces-closing-of-crystal-river-nuclearpower-plant/1273794

| | Plumer, B. (2012, January 28). What Sweden can teach us about

nuclear waste. The Washington Post.

| | Plumer, B. (2017). U.S. Nuclear Comeback Stalls as Two Reactors

Are Abandoned. Retrieved from The New York Times:

https://www.nytimes.com/2017/07/31/climate/nuclearpower-project-canceled-in-south-carolina.html

| | Proctor, D. (2017). Cost Overruns at Vogtle Expected to Soar.

Retrieved from Power: http://www.powermag.com/

cost-overruns-at-vogtle-expected-to-soar

| | Reuters. (2018). EDF says Flamanville weldings problems worse

than expected. Retrieved from Reuters: https://

www.reuters.com/article/edf-flamanville/update-2-edfsays-flamanville-weldings-problems-worse-thanexpected-idUSL8N1RN1E6

| | Rosendahl, J., and Forsell, T. (2017). Areva’s Finland reactor to

start in 2019 after another delay. Retrieved from Reuters:

https://www.reuters.com/article/us-finland-nuclear-olkiluoto/

arevas-finland-reactor-to-start-in-2019-after-anotherdelay-idUSKBN1CE1ND

| | Secretary of Energy Advisory Board. (2016). Report on the Task

Force on the Future of Nuclear Power.

| | Sethuraman, R. N. (2018). New Jersey Senate, Assembly passes

nuclear subsidy bill. Retrieved from Reuters: https://

www.reuters.com/article/pseg-nuclear-new-jersey-subsidies/

update-1-new-jersey-senate-assembly-passes-nuclear- subsidybill-idUSL1N1RP2EN

| | (2008). The Economics of Nuclear Power. Information Papers,

World Nuclear Association.

| | U.S. Energy Information Agency. (2017). International Energy

Outlook. Retrieved from https://www.eia.gov/outlooks/ieo/

pdf/0484(2017).pdf

| | United Nations Development Programme. (2017). Human

Development Index. Retrieved from Human Development

Reports: http://hdr.undp.org/en/content/humandevelopment-index-hdi

| | United Nations Scientific Committee on the Effects of Atomic

Radiation. (2017). Developments since the 2013 UNSCEAR report

on the levels and effects of radiation exposure due to the nuclear

accident following the Great East-Japan Earthquake and Tsunami

- A 2017 white paper to guide the Scientific Committee’s future

programme of work. New York.

| | Wigeland, R., at al. (2014). Nuclear Fuel Cycle Evaluation

and Screening - Final Report, INL/EXT-14-31465,

FCRD-FCO-2014-000106.

| | Winters, J. W., Corletti, M. M., & Thompson, M. (2001). AP1000

construction and operating costs. 9 th International Conference

On Nuclear Engineering (ICONE-9). Nice, France.

| | World Nuclear Association. (2017). Nuclear Power in Belgium.

Retrieved from http://www.world-nuclear.org/informationlibrary/country-profiles/countries-a-f/belgium.aspx

| | World Nuclear Association. (2017). Nuclear Power in Germany.

Retrieved from http://www.world-nuclear.org/informationlibrary/country-profiles/countries-g-n/germany.aspx

| | World Nuclear Association. (2017). Nuclear Power in South

Korea. Retrieved from http://www.world-nuclear.org/

information-library/country-profiles/countries-o-s/

south-korea.aspx

| | World Nuclear Association. (2017). Nuclear Power in

Switzerland. Retrieved from http://www.world-nuclear.org/

information-library/country-profiles/countries-o-s/

switzerland.aspx

| | World Nuclear Association. (2017). Nuclear Power in Taiwan.

Retrieved from http://www.world-nuclear.org/informationlibrary/country-profiles/others/nuclear-power-in-taiwan.aspx

| | Zhang, Z., et al. (2016, March). The Shandong Shidao Bay

200 MW e High-Temperature Gas-Cooled Reactor Pebble-Bed

Module (HTR-PM) Demonstration Power Plant: An Engineering

and Technological Innovation. Engineering, 2 (1), 112-118.

Authors

Jacopo Buongiorno

Massachusetts Institute of Technology (MIT)

Michael Corradini

University of Wisconsin at Madison

John Parsons

Massachusetts Institute of Technology (MIT)

David Petti

Massachusetts Institute of Technology (MIT)

Idaho National Laboratory (INL)

Talks of an End to Germany’s

Nuclear Industry Premature

Roman Martinek

There now remains hardly anyone in Germany who has not yet dropped in the last few years a single line about how

the country is valiantly closing one by one its nuclear power plants. It was difficult to expect anything else, though, if

one keeps in mind that the accelerated phase-out of nuclear energy announced by the German political establishment

in 2011 became perhaps the most resonant energy policy decision in the country's recent history. At the same time, it is

often overlooked that the “Atomausstieg” (the name given to Germany’s denuclearization) is a like a hat that has a false

bottom to it: the issue of disconnection from the grid lying on the surface of public discourse, while behind it (or ‘under’

it, if you will) lies a number of deeper and more far-reaching questions.

Meanwhile, the consistency and maturity

of the decision itself to accelerate

the nuclear phase-out still raises

questions, especially if one takes into

account the situation in the German

nuclear industry that preceded the

events of March 2011 in Japan.

Professor Hans-Josef Allelein, director

for reactor safety at the Institute of

Energy and Climate Research in Julich,

recalls: “In Germany, before the accident

at Fukushima NPP, an agreement

was reached at the political level

to extend the operation of German

nuclear power plants for a period

Energy Policy, Economy and Law

Talks of an End to Germany’s Nuclear Industry Premature ı Roman Martinek


atw Vol. 63 (2018) | Issue 11/12 ı November/December

of 8 to 14 years. The decision that was

taken after Fukushima clearly comes

into conflict with this agreement. It

should be acknowledged that in 2011,

Chancellor Angela Merkel skillfully

played on the moods of the German

population and the German media,

taking advantage of this to forge a

coalition with the Social Democrats.

From my point of view, the decision

was practically unsupported by any

facts – that was simply power politics

on Merkel’s part”. According to the

expert, the government should not

have made any sudden movements,

succumbing to antinuclear sentiment

that swept across Western Europe

back then: “The national economy

and the population would have it

easier now if nuclear energy were

used further as planned and the

revenues in this case could be used to

address the implementation of the

“Energiewende”.

It is remarkable that the German

nuclear phase-out is taking place amid

the growing recognition by the international

community of the significance

of nuclear power in combating

climate change. As recently as in early

October, the Intergovernmental Panel

on Climate Change (IPCC) presented

its updated assessment, calling for

rapid, comprehensive and unprecedented

changes in all spheres of the

global community to limit global

warning to 1.5°C. In the 89 mitigation

scenarios considered by the IPCC,

cumulative nuclear generation increases,

on average by around 2.5

times by 2050. The London-based

World Nuclear Association points out

in this regard that the report also says

that “comparative risk assessment

shows health risks are low per unit of

electricity production”, if compared to

other low-carbon sources of energy.

Be it as it may, the fact is that

Germany still has seven NPPs in operation.

All of them shall be shut down

until the end of 2022 – like in the

‘Farewell’ Symphony by Joseph Haydn,

the seven remaining reactors will in

turn be leaving Germany’s podium of

electricity generation. And yet the

story of the nuclear industry in

Germany does not end upon closing of

the last industrial reactor. And the

point here is not only that the country’s

numerous research reactors will continue

their work regardless of the

course of the energy transition. It is

also important that to create not only

a greenfield, but even a brownfield on

an NPP site, simply disconnecting a

power plant from the grid is not

enough. It must be safely dismantled

and the nuclear waste generated over

the years of operation – removed or

safely disposed of. A task that will take

decades to accomplish.

Considering the ever growing

scope of work, it is extremely important

for Germany to maintain an

acceptable level of competence in the

nuclear industry – there should be

sufficient number of profile specialists

and educational institutions providing

for training of those. As paradoxical

and even tragic as it may sound,

decommissioning and dismantling of

NPPs is and will be carried out, among

others, by those who once built them.

In a word, the back-end of the nuclear

fuel cycle is not much of a lifeasserting

field in German realities.

Rainer Klute, head of the non-profit

association Nuklearia, which is engaged

in raising the public acceptance

of nuclear technologies, laments that

there are too few graduates specializing

in nuclear power engineering in

the country today. This does not surprise

him even taking into account the

demand for skills and competencies

that makes it possible to assess job

prospects in this sphere as fairly good.

“Who, being a young man, would

want to get a profession in which one

cannot create anything new that one

could take pride in and instead has to

be engaged in shutting down and dismantling

well-functioning facilities?

Does this seem like an attractive life

goal?” Klute asks rhetorically.

It cannot be ruled out that this is

one of the reasons why it is not only

domestic companies that participate in

NPP decommissioning projects in the

country – foreign energy companies

appear quite willing to provide their

services. One such example is Nukem

Technologies, which specializes in

radioactive waste (RW) and spent

nuclear fuel (SNF) management – in

2009, the engineering company with

its head office located in Alzenau was

acquired by a subsidiary of the Russian

state corporation Rosatom. In its technological

segment, Nukem Technologies

takes leading positions in the European

market: the company's project portfolio

includes, inter alia, the SNF

storage facility at Ignalina NPP in

Lithuania, a similar facility for the

decommissioned units 1 to 4 at

Kozloduy NPP in Bulgaria; in Germany,

Nukem is engaged in the decommissioning

of Philippsburg NPP.

In a consortium with the German

company Entsorgungswerk für Nuklearanlagen

(EWN), Nukem Technologies

participates in the works that are

currently underway at Biblis NPP – in

June 2017, the company was awarded

a corresponding bid. The plant was

shut down in 2011 among other facilities

that fell under the government’s

decision to immediately close eight

reactors in the wake of the Fukushima

accident. In 2017, decommissioning of

both units at Biblis NPP was completed,

followed by the start of dismantling

works. According to the

plant’s director Horst Kemmeter, this

process should take no less than 15

years. As of today, all nuclear fuel has

already been extracted from both

reactors – the last containers left the

NPP site this September, Kemmeter

said at a regular dialogue forum held

as part of the ‘Biblis transparent’

initiative. As for the role of the Nukem

and EWN consortium, the companies

will be responsible for dismantling

and disassembling four steam generators

per unit, the works launched in

October.

Active engagement of foreign

energy companies in back-end projects

in Germany is backed up by a

thesis that phasing out German

nuclear facilities can be accomplished

in the most safe and smooth manner if

one combines German and international

know-how, especially when it

comes to companies that are actively

developing the nuclear industry in

their own countries. Professor Thomas

Walter Tromm, head and spokesperson

of the Nuclear Waste Management,

Safety and Radiation Research

Programme (NUSAFE) at the Karlsruhe

Institute of Technology Energy Center,

notes: “I would point out that if we

consider foreign participation, we are

still dealing with companies that have

branches or offices in Germany”. As

regards the specific project at Biblis

NPP, in which Nukem participates

together with EWN, it should be

stressed that EWN is a 100% state

enterprise, that is, domestic knowhow

is in place here as well, the expert

says.

Given the array of work to be performed

as part of decommissioning

Germany’s NPPs, specialists will be

sure to have things to do for several

decades to come. The demand for

expertise in this area is therefore high,

creating, in turn, the need for measures

to maintain the necessary level of

expertise in the country in the midand

long term. “At the same time, it is

important to maintain competencies

not only among scientists, but also

among engineers who deal with

decommissioning in practice – this is

to be ensured, in particular, through

the dual education system (a form of

ENERGY POLICY, ECONOMY AND LAW 579

Energy Policy, Economy and Law

Talks of an End to Germany’s Nuclear Industry Premature ı Roman Martinek


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENERGY POLICY, ECONOMY AND LAW 580

education where students acquire theoretical

knowledge at the university and

practical knowledge in the workplace –

author's note)”, believes Prof. Tromm.

“Further training of such specialists

can be carried out at the remaining

operating NPPs as well as within

decommissioning projects”.

Another critical topic for Germany

remains preserving the country’s

expert weight in the international

professional community after the last

Development on NIS Directive in Different

EU Countries in the Energy Sector

Stefan Loubichi

nuclear power reactor is shut down.

“This is an issue that the government

is also concerned with, as reflected in

the new edition of the government’s

energy research program”, says Prof.

Tromm. In resolving this issue, he

believes, one can count on the support

from the Helmholtz Association, as

well as universities that still continue

research in the field of reactor safety.

The German nuclear industry dates

back to the 1950s and 1960s, when

the first research reactors were commissioned.

For a country with a more

than half a century history of using

nuclear energy for peaceful purposes,

being able to remain an equal partner

in the international discussion shall

be not least a question of prestige.

The NIS Directive DIRECTIVE (EU) 2016/1148 concerning measures for a high common level of security of

network and information across the Union, better known as the NIS Directive, is the European way to ensure a high

level of security of network and information systems within the Union.

Author

Roman Martinek

Expert for Communication

Czech Republic

Member States have very different

levels of preparedness, which has led

to fragmented approaches across the

Union. This results in an unequal level

of protection of consumers and businesses,

and undermines the overall

level of security of network and information

systems within the Union.

Lack of common requirements on

operators of essential services and

digital service providers in turn makes

it impossible to set up a global and

effective mechanism for cooperation

at Union level.

By 9 November 2018, for each

sector and subsector referred to in

Annex II, Member States shall (according

to article 5 of the NIS Directve)

identify the operators of essential

services with an establishment on

their territory.

The criteria for the identification of

the operators of essential services

shall be as follows:

• An entity provides a service which

is essential for the maintenance of

critical societal and/or economic

activities;

• The provision of that service depends

on network and information

systems; and

• An incident would have significant

disruptive effects on the provision

of that service.

When determining the significance of

a disruptive effect as referred to in

point (c) of Article 5(2), Member

States shall (according to article 6

of the NIS Directive) take into

account at least the following crosssectoral

factors:

• The number of users relying on

the service provided by the entity

concerned;

• The dependency of other sectors

referred to in Annex II on the

service provided by that entity;

• The impact that incidents could

have, in terms of degree and duration,

on economic and societal

activities or public safety;

• The market share of that entity;

• The geographic spread with regard

to the area that could be affected

by an incident;

• The importance of the entity for

maintaining a sufficient level of the

service, taking into account the

availability of alternative means

for the provision of that service.

According to Article 8 of the NIS

Directive each Member State shall

designate one or more national competent

authorities on the security of

network and information systems

(‘competent authority’), covering at

least the sectors referred to in Annex II

and the services referred to in Annex

III. Member States may assign this role

to an existing authority or authorities.

The competent authorities shall

monitor the application of this Directive

at national level.

Each Member State shall designate

a national single point of contact

on the security of network and information

systems (‘single point of

contact’).

According to article 9 of the NIS

Directive each Member State shall

designate one or more CSIRTs (Computer

security incident response

teams) which shall comply with the

requirements set out in point (1) of

Annex I, covering at least the sectors

referred to in Annex II and the services

referred to in Annex III, responsible

for risk and incident handling in

accordance with a well-defined process.

A CSIRT may be established

within a competent authority.

The essential articles for operator

of essential services are aticle 14

and 15.

Member States shall (according to

article 14) ensure that operators of

essential services take appropriate

and proportionate technical and

organisational measures to manage

the risks posed to the security of

network and information systems

which they use in their operations.

Having regard to the state of the art,

those measures shall ensure a level of

security of network and information

systems appropriate to the risk posed.

As well Member States shall ensure

that operators of essential services

take appropriate measures to prevent

and minimise the impact of incidents

affecting the security of the network

and information systems used for the

provision of such essential services,

with a view to ensuring the continuity

of those services.

Member States shall ensure that

operators of essential services notify,

Energy Policy, Economy and Law

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


atw Vol. 63 (2018) | Issue 11/12 ı November/December

without undue delay, the competent

authority or the CSIRT of incidents

having a significant impact on the

continuity of the essential services

they provide. Notifications shall

include information enabling the

competent authority or the CSIRT to

determine any cross-border impact of

the incident. Notification shall not

make the notifying party subject to

increased liability.

In order to determine the significance

of the impact of an incident, the

following parameters in particular

shall be taken into account:

• The number of users affected by

the disruption of the essential

service;

• The duration of the incident;

• The geographical spread with

regard to the area affected by the

incident.

According to article 15 of the NIS

Directive, Member States shall ensure

that the competent authorities have

the necessary powers and means to

assess the compliance of operators of

essential services with their obligations

under Article 14 and the effects

thereof on the security of network and

information systems.

Member States shall ensure

that the competent authorities have

the powers and means to require

operators of essential services to

provide:

• The information necessary to

assess the security of their network

and information systems,

including documented security

policies;

• Evidence of the effective implementation

of security policies,

such as the results of a security

audit carried out by the competent

authority or a qualified auditor

and, in the latter case, to make

the results thereof, including the

underlying evidence, available to

the competent authority.

In order to promote convergent

implementation of Article 14 (1)

and (2), Member States shall,

without imposing or discriminating

in favour of the use of a particular

type of technology, encourage the

use of European or internationally

accepted standards and specifications

relevant to the security

of network and information

systems.

By 9 May 2018, Member States

shall adopt and publish the laws,

regulations and administrative provisions

necessary to comply with this

Directive. They shall immediately

inform the Commission thereof. They

shall apply those measures from

10 May 2018.

According to Annex II there are the

following types of entities fort he

purposes of article 4:

1. Energy:

a. Electricity:

Electricity undertakings, distribution

system operators and transmission

system operators, all as

defined in article 2 2009/72/EC

b. Oil:

Operators of oil transmission pipelines,

Operators of oil production,

refining and treatment facilities,

storage and transmission

c. Gas:

Supply undertakings, Distribution

system operators, Transmission

system operators, Storage system

operators, LNG system operators,

LNG system operators, Operators

of natural gas refining and

treatment facilities, as defined in

Article 2 of Directive 2009/73/EC

2. Transport:

a. Air transport:

Air carriers, Airport managing

bodies, traffic management control

operators providing air traffic

control

b. Rail transport:

Infrastructure managers, railway

c. Water transport:

Inland, sea and coastal passenger

and freight water transport companies,

Managing bodies of ports,

Operators of vessel traffic services

d. Road transport:

Road authorities, Operators of

Intelligent Transport Systems

3. Banking:

Credit institutions

4. Financial market infrastructures:

Operators of trading venues, Central

counterparties (CCPs)

5. Health sector:

Health care settings (including

hospitals and private clinics),

Healthcare providers

6. Drinking water supply and distribution:

Suppliers and distributors of water

intended for human consumption

7. Digital Infrastructures:

IXPs, DNS service providers, TLD

name registries

NIS ImpIementation in France

The NIS Directive is partially transposed.

Implementation acts are:

Act Nr. 2018-133 of 26 th February

2018

Decree Nr. 2018-384 of 23 rd of May

2018.

The national strategy on the security

of network an information security

is available on: https://www.ssi.gouv.

fr/uploads/2015/10/strategie_

nationale_securite_numerique_fr.pdf

Single point of contact is:

Agence nationale de la sécurité des

systèmes d'information (ANSSI)

Boulevard de la Tour-Maubourg 51,

75700 Paris 07 SP

E-Mail: nis@ssi.gouv.fr

National Computer Security Incident

Response Team (CSIRT) is:

CSIRT France

E-Mail: cert-fr.cossi@ssi.gouv.fr

Phone: +33 1 71758468

According tot he decree of 23 rd of May

2018 the following sectors are identified

as essential services:

• Civil activities of the State,

• Judicial activities,

• Military activities of the State,

• Food,

• Electronic, audiovisual and information

communications,

• Energy,

• Space and research,

• Finance,

• Water management,

• Industry,

• Health,

• Transport.

Article 2 of the decree of 23 rd of May

2018 provides that the operators

shall be designated according to the

following criteria:

• The number of users depending on

the service;

• The dependence of the other sectors

of activity listed in the schedule to

this decree on the service;

• The consequences that an incident

could have, in terms of gravity, and

duration, on the functioning of the

economy or society or on public

safety;

• The operator's market share;

• The geographical scope with

regard to the area likely to be

affected by an incident;

• The importance of the operator to

ensure an adequate level of service,

taking into account the availability

of alternative means for the provision

of the service;

• Where applicable, sectoral factors.

The operators shall appoint a representative

that will be the point of

contact with the ANSSI.

Reporting obligations:

Operators of essential services must

report “without undue delay” to

the ANSSI any incident significantly

impacting the security of the network

and information systems.

The operators shall disclose within

three months from the date of their

appointment the list of the networks

and information systems listed in the

Act. The operators shall then send

once a year to the ANSSI an update of

that list. The operators also need to

keep this information at the disposal

of the ANSSI in case of inspection.

ENERGY POLICY, ECONOMY AND LAW 581

Energy Policy, Economy and Law

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENERGY POLICY, ECONOMY AND LAW 582

Sanctions:

There are three criminal for the operators

of essential services:

• Directors that do not comply with

the security rules, even after the

timeline specified in a formal

demand issued by the ANSSI shall

be punishable with a fine of

€100,000;

• Directors that do not comply with

their reporting obligation in case of

an incident shall be punishable

with a fine of €75,000;

• Directors that obstruct an investigation

shall be punishable with a

fine of €125,000.

NIS Implementation

in Sweden

The NIS Directive is transposed.

Implementation acts are:

Act (2018:000) “Information security

for certain operators of essential

services and digital service providers”

Ordinance (2018:000) “Information

security for certain operators of

essential services and digital service

providers”

The national strategy on the security

of network an information security

is available on:

https://www.government.se/

legal-documents/2017/11/

skr.-201617213/

Single point of contact is:

Swedish Civil Contingencies Agency

(MSB)

651 81 Karlstad

E-Mail: spoc.nis@msb.se

National Computer Security Incident

Response Team (CSIRT) is:

MSB/CERT-SE

E-Mail: cert@cert.se

Phone: +46 867 857 99

According tot he Swedish NIS

Directive law the following sectors

are identified as essential services:

• Energy,

• Transportation,

• Banking,

• Financial market infrastructure,

• Health care,

• Water management and digital

infrastructure.

Operators of essential services must

immediately report significant disruptions

to MSBT. The reporting

obligation must not have a negative

effect on correcting the disruption.

Specifications on what defines a

significant disruption are announced

in an ordinance/government agency

regulation.

MSB established detailed assessment

material to assist operators of

essential services in deciding whether

the directive is applicable to their

service. MSB presented a catalogue

of the identified criteria through a

regulation. Operators of essential

services are without delay obliged to

report to the supervisory authority.

Relevant regulatory authorities are:

• Energy sector: Swedish Energy

Agency

• Transportation sector: Swedish

Transport Agency

• Banking: Swedish Financial Supervisory

Authority

• Finance: Swedish Financial Supervisory

Authority

• Health care: Swedish Health and

Social Care Inspectorate

• Distribution of Drinking water:

The National Food Agency

• Digital infrastructure: Swedish

Post and Telecom Authority

• Digital services: Swedish Post and

Telecom Authority

Reporting obligations:

Operators of essential services must

immediately report significant disruptions

to the Swedish Civil Contingencies

Agency.

Sanctions:

If the relevant authority finds that

the supplier does not comply with the

act or ordinance they can instruct the

supplier to take actions.

The request can be combined

with a penalty fine. The MSB shall

decide on administrative fines from

5,000 SEK up to 10,000,000 SEK

for not complying with the

security requirements or incident

notification.

NIS Implementation

in the United Kingdom

The NIS Directive is transposed.

The implementation of the EU

Security of Networks and Information

Systems (NIS) Directive in May 2018

requires Competent Authorities (CAs)

to have the ability to assess the cyber

security of Operators of Essential

Services (OES).

In support of the UK NIS Directive

implementation, the NCSC is committed

to working with lead government

departments, regulators and

industry to develop a systematic

method of assessing the extent to which

an organisation is adequately managing

cyber security risks in relation

to the delivery of essential services.

This assessment method, otherwise

known as the Cyber Assessment

Framework (CAF), is intended to meet

both NIS Directive requirements and

wider CNI needs.

The implementation of the EU

Security of Networks and Information

Systems (NIS) Directive in May 2018

requires Competent Authorities (CAs)

to have the ability to assess the cyber

security of Operators of Essential

Services (OES).

In support of the UK NIS Directive

implementation, the NCSC is committed

to working with lead government

departments, regulators and

industry to develop a systematic

method of assessing the extent to

which an organisation is adequately

managing cyber security risks in

relation to the delivery of essential

services.

You find indicators of good practice

for four different objectives:

Objective A

A.1. Governance

A.2. Risk Management

A.3. Asset Management

Source: https://www.ncsc.gov.uk/

guidance/caf-objective-a

Objective B

B.1. Service Protection Policies and

Processes

B.2. Identity and Access Control

B.3. Data Security

B.4. System Security

B.5. Resilient Networks and Systems

B.6. Staff Awareness and Training

Source: https://www.ncsc.gov.uk/

guidance/caf-objective-b

Objective C

C.1. Security Monitoring

C.2. Proactive Securit Event Discovery

Source: https://www.ncsc.gov.uk/

guidance/caf-objective-c

Objective D

D.1. Resource and Recovery Planning

D.2. Lessons Learned

Source: https://www.ncsc.gov.uk/

guidance/caf-objective-d

The national strategy on the

security of network an information

security is available on:

https://www.gov.uk/government/

publications/national-cyber-securitystrategy-2016-to-2021

Single Point of contact is:

National Cyber Security Centre (NCSC)

E-Mail: UKSPOC@ncsc.gov.uk

Phone: +44 300 020 0973

National Computer Security Incident

Response Team (CSIRT) is as well the

National Cyber Security Centre

(NCSC)

In the UK unfortunately we find a

lot of different national competent

authorities for OES (=Operators of

Essential Services):

ENERGY – Electricity / Gas

England, Scotland and Wales:

Department for Business, Energy &

Industrial Strategy, / the Office of Gas

and Electricity Markets

E-Mail: nis.energy@beis.gov.uk

Phone: +44 20 7901 7000

Northern Ireland:

Department of Finance Northern

Ireland

E-Mail: nis.ca@finance-ni.gov.uk

ENERGY – Oil

England, Scotland and Wales:

Energy Policy, Economy and Law

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Department for Business, Energy &

Industrial Strategy, / Health & Safety

Executive

E-Mail: nis.cyber.incident@hse.gov.uk

Department of Finance Northern

Ireland

E-Mail: nis.ca@finance-ni.gov.uk

By 6 November 2018 the Department

for Business, Energy and Industrial

Strategy gave the following implementation

update;

For the energy sector in England,

Wales and Scotland, BEIS shares Competent

Authority responsibilities with

Ofgem and HSE. In downstream gas and

electricity sector Ofgem delivers the

compliance functions under a Memorandum

of Understanding with BEIS. In

the oil and upstream gas sector the

compliance functions will be carried

out by HSE under an Agency Agreement

with BEIS. Both HSE and Ofgem have

been engaging closely with NCSC, the

BEIS NIS regulatory policy function,

and with industry in order to develop

further sector specific guidance.

This guidance will tailor the CAF to

the needs of energy sub sectors and will

provide further information about the

steps that Operators of Essential Services

(OES) should take in order to identify

their levels of cyber security, commence

the improvement journey to address

and manage cyber security risks, and be

compliant with the NIS regulations.

According to the view of the

Department for Business, Energy &

Industrial Strategy operators will need

time to adjust to the new framework.

They expect operators to undertake a

robust but realistic CAF self- assessment

supported by evidence. In the

first year, they do not expect to take

enforcement action on the basis of the

operator’s CAF self-assessment and

recognise development and improvement

will likely be needed, having

taken a risk-based approach.

Key dates fort he future would be

as follows:

• 31 October 2018: CAF version 2

was published on NCSC website

• End November 2018: publication

of HSE operational guidance for

the oil sector

• End November 2018: publication

of Ofgem Cyber Security Practices

guidance for the electricity and gas

sector, to be available on Ofgem

website.

• November 2018: DCMS returns notification

of number of OES in

scope of the regulations to the European

Commission and BEIS provides

a list of OES to GCHQ.

• Late November / mid-December

2018: sub-sector events to be held

with OES. HSE will launch its

operational guidance and provide

surgeries to launch the sub-sector

CAF self-assessments on 21 November.

Ofgem will focus on sub-sector

workshops between 10-11 December.

Invitations will be issued to

OES.

• From Q2 2019 or potentially earlier

depending on the CA: Competent

Authorities will review the selfassessment

evidence and improvement

plans; and establish a rolling

programme of inspections or thirdparty

assessments/validations of

OES own self-assessments. Please

refer to detailed guidance from

Ofgem or HSE for further details

on how and when you should

return your self-assessment.

Sanctions:

Financial penalties will only be levelled

as a last resort where it is assessed

appropriate risk mitigation measures

were not in place without good reason.

In addition, the maximum penalties

should be reserved for the most severe

cases, and it is expected that mitigating

factors (including steps taken to comply

with the NIS Directive, actions

taken to remedy any consequences)

and sector specific factors will be

taken into account by the competent

authority when deciding appropriate

regulatory response.

In the event of any enforcement

action by the competent authority, it

will notify the operator of impending

action, allow the operator an opportunity

to make representations, and

confirm the final decision and

reasoning of the competent authority.

NIS Implementation

in the Netherlands

The status of transposition is:

In progress

Implementation act is the Security

Network- and Information Systems

Act, 29 May 2018

The national strategy on the

security of network an information

security is available on: https://www.

nctv.nl/ncsa/index.aspx

Single point of contact is:

National Cyber Security Centre (NCSC)

E-Mail: info@ncsc.nl

According to https://ec.europa.eu/

digital-single-market/en/implemen tation-nis-directive-

netherlands a National

Computer Security Incident

Response Team (CSIRT) has to be determined.

Although the Government

declared that the Minister of Economic

Affairs and Climate Policy is responsible

for the energy infrastructure.

OSE are obliged to notify immediately

the following events:

1. Incidents with significant consequences

for the continuity of the

essential service

2. Breaches of the security of network

and information systems which

may have significant consequences

for the continuity of the essential

service;

Sanctions:

There are 3 types of sanctions defined,

until now:

1. Up to EUR 5 million for any

breach of the draft implementation

act by essential service

operators,

2. A maximum of EUR 1 million for

failing to cooperate with a request

for further information from the

National Cyber Security Centre;

and

3. A maximum fine of EUR 1 million

for failure to adequately cooperate

with supervisory authorities

exercising their competencies.

Compared to other countries at the

moment the Netherlands has the

highest sanctions, but the lowest

level of clearly defined obligations.

NIS Implementation

in Hungary

The status of transposition is:

Partial transposition

Implementation acts are:

Act 134 of 2017 on modifying

certain interior related tasks and

corresponding laws

Government Decree 394/2017

(XII.13) on modifying government

decrees related to Act 134 of 2017 on

modifying certain interior related

tasks and corresponding laws

Hungary has as well identified

the following sectors: energy, transportation,

health, finance, info communication

technologies, water.

The national strategy on the

security of network an information

security is (officially) not yet adopted.

Single Point of contact is:

National Cyber Security Centre

(NCSC)

Dózsa György út 86/B Budapest

H-1068

E-Mail: spoc@govcert.hu

Phone: +36 206 9320

National competent authorities for all

sectors for OES is:

National Directorate General for

Disaster Management

E-Mail: kikfo@katved.gov.hu

Phone: +36 208 200 548

Contact Hours: 08:00 – 16:00

National Computer Security Incident

Response Team (CSIRT) is the same as

the single point of contact.

Operators of essential services

must immediately report extraordinary

incidents to the Directorate and

to other competent authorities as

defined by Hungarian laws and

regulations.

ENERGY POLICY, ECONOMY AND LAW 583

Energy Policy, Economy and Law

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENERGY POLICY, ECONOMY AND LAW 584

The reporting must include at least:

• The description and status of the

incident,

• The extent of the disruption,

• Contact details of the incident

response person appointed by the

provider,

• The aspects that define the effect of

the incident.

Section 9 (2) of Government Decree

65/2013 (III.8) specifies the amount

of administrative fines that may be

imposed on operators of essential

services for breach of any obligations

defined by the applicable laws.

The amount the administrative fine

ranges between HUF 100,000

(~EUR 330) and HUF 3,000,000

(~EUR 9,900).

The next step

Although the Implementation of the

NIS Directive is not sufficient finished

in all EU countries, the European

Commission continues to implement

further steps. In Annex 1 to COM

(2017) 477 finally we find the requirements

to be met by conformity assessment

bodies as follows:

1. A conformity assessment body

shall be established under national

law and have legal personality.

2. A conformity assessment body

shall be a third-party body independent

of the organisation or the

ICT products or services it assesses.

3. A body belonging to a business

association or professional federation

representing undertakings

involved in the design, manufacturing,

provision, assembly, use

or maintenance of ICT products or

services which it assesses, may, on

condition that its independence

and the absence of any conflict

of interest are demonstrated, be

considered a conformity assessment

body.

4. A conformity assessment body, its

top-level management and the

personnel responsible for carrying

out the conformity assessment

tasks shall neither be the designer,

manufacturer, supplier, installer,

purchaser, owner, user or maintainer

of the ICT product or service

which is assessed, nor shall it

be the authorised representative

of any of those parties. This shall

not preclude the use of assessed

products that are necessary for the

operations of the conformity assessment

body or the use of such

products for personal pur poses.

5. A conformity assessment body, its

top-level management and the

personnel responsible for carrying

out the conformity assessment

tasks shall not be directly involved

in the design, manufacture or

construction, the marketing, installation,

use or maintenance of

those ICT products or services, or

represent the parties engaged in

those activities. They shall not

engage in any activity that may

conflict with their independence of

judgement or integrity in relation

to conformity assessment activities

for which they are notified. This

shall apply, in particular, to consultancy

services.

6. Conformity assessment bodies

shall ensure that the activities of

their subsidiaries or subcontractors

do not affect the confidentiality,

objectivity or impartiality

of their conformity assessment

activities.

7. Conformity assessment bodies and

their personnel shall carry out the

conformity assessment activities

with the highest degree of professional

integrity and the requisite

technical competence in the

specific field and shall be free from

all pressures and inducements,

including of a financial nature,

which might influence their

judgement or the results of their

conformity assessment activities,

especially as regards persons or

groups of persons with an interest

in the results of those activities.

8. A conformity assessment body

shall be capable of carrying out all

the conformity assessment tasks

assigned to it under this Regulation,

whether those tasks are

carried out by the conformity

assessment body itself or on its

behalf and under its responsibility.

9. At all times and for each conformity

assessment procedure and each

kind, category or sub-category of

ICT products or services, a conformity

assessment body shall have

at its disposal the necessary:

a) Personnel with technical knowledge

and sufficient and appropriate

experience to perform the

conformity assessment tasks…

10. A conformity assessment body

shall have the means necessary to

perform the technical and administrative

tasks connected with the

conformity assessment activities in

an appropriate manner, and shall

have access to all necessary equipment

and facilities.

11. The personnel responsible for carrying

out conformity assessment

activities shall have the following:

a) Sound technical and vocational

training covering all the conformity

assessment activities;

b) Satisfactory knowledge of the requirements

of the assessments they

carry out and adequate authority

to carry out these assessments;

c) Appropriate knowledge and understanding

of the applicable requirements

and testing standards;

d) The ability to draw up certificates,

records and reports demonstrating

that assessments have been carried

out.

12. The impartiality of the conformity

assessment bodies, of their toplevel

management and of the

assessment personnel shall be

guaranteed.

13. The remuneration of the top-level

management and of the assessment

personnel of a conformity

assessment body shall not depend

on the number of assessments

carried out or on the results of

those assessments.

14. Conformity assessment bodies

shall take out liability insurance

unless liability is assumed by the

State in accordance with national

law, or the Member State itself is

directly responsible for the conformity

assessment.

15. The personnel of a conformity

assessment body shall observe professional

secrecy with regard to all

information obtained in carrying

out their tasks under this Regulation

or pursuant to any provision of

national law giving effect to it,

except in relation to the competent

authorities of the Member States in

which its activities are carried out.

16. Conformity assessment bodies

shall meet the requirements of

standard EN ISO/IEC 17065:2012.

17. Conformity assessment bodies

shall ensure that testing laboratories

used for conformity assessment

purposes meet the requirements

of standard EN ISO/IEC

17025:2005.

Only this Annex 1 would help us in the

field of independence in IT security. In

Germany, for example, it would be

possible at the moment, that in special

situations energy companies can do

their own § 8a verification. I don't

think that this is the way it should be.

Independent verification is only

possible with independent certification

bodies.

Author

Prof. h.c.(IUK) PhDr. Dipl.-Kfm./

Dipl.-Vw. Stefan Loubichi

Loubichi Business Consulting UG

(haftungsbeschränkt)

Associate expert to Kraftwerksschule

Essen and

Simulator Centre Essen

(GfS mbH / KSG mbH)

Grafenberger Allee 125

40237 Düsseldorf, Germany

Energy Policy, Economy and Law

Development on NIS Directive in Different EU Countries in the Energy Sector ı Stefan Loubichi


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Schiedlich-friedlich? – Folgen des „Achmea“-Urteils des EuGH

auch für das ICSID-Schiedsgerichtsverfahren von Vattenfall?

Ulrike Feldmann

Am 6. März diesen Jahres hat der Europäische Gerichtshof (EuGH, Große Kammer) ein folgenschweres und umstrittenes

Urteil zur Vereinbarkeit von Investitionsschutzklauseln mit Unionsrecht gefällt (Rechtssache C-284/16 - „Achmea“).

Das „Achmea“-Ausgangsverfahren

Aufgrund gesetzlicher Maßnahmen der Slowakischen

Republik (zeitweise geltendes Verbot der Gewinnausschüttung

aus privatem Krankenversicherungsgeschäft) sah sich

Achmea BV., die als Krankenversicherungsgesellschaft in

der Slowakei aktiv war, geschädigt und leitete ab Oktober

2008 ein Schiedsverfahren nach Art. 8 des Abkommens

zwischen den Niederlanden, der Tschechischen Republik

und der Slowakischen Republik über die Förderung des

gegenseitigen Schutzes von Investitionen ein. Als Schiedsort

für Streitigkeiten sieht das Abkommen Frankfurt am

Main vor, so dass auf das Verfahren deutsches Recht anzuwenden

war. Im Schiedsverfahren erhob die Slowakische

Republik die Einrede der Unzuständigkeit des Schiedsgerichts.

Als Begründung trug sie vor, dass aufgrund ihres

Beitritts zur EU der in Art. 8 Abs. 2 des o.g. Schiedsabkommens

vorgesehene Rückgriff auf ein Schiedsverfahren mit

dem Unionsrecht nicht vereinbar sei. Dieser Einwand

wurde in erster und zweiter Schieds gerichtsinstanz zurückgewiesen,

und die Slowakische Republik wurde verurteilt,

Schadensersatz an Achmea BV. zu leisten. Gegen die

Abweisung ihres Antrags auf Auf hebung des Schiedsspruchs

legte die Slowakische Republik Rechtsbeschwerde

beim Bundesgerichtshof (BGH) in Karlsruhe ein.

Das Vorabentscheidungsersuchen des BGH

Zwar verneinte der BGH die Frage, ob Art. 344 AEUV

(Vertrag über die Arbeitsweise der EU), wonach sich die

Mitgliedstaaten verpflichten, Streitig keiten über die Auslegung

oder Anwendung der Verträge nicht anders als

hierin vorgesehen zu regeln, einer Bestimmung in einer

internationalen Übereinkunft zwischen den EU-Mitgliedstaaten

entgegensteht, die vorsieht, dass ein Investor eines

EU-Mitgliedstaates im Falle einer Streitigkeit über Investitionen

in einem andern EU-Mitgliedstaat gegen diesen ein

Verfahren vor ein Schiedsgericht bringen darf, dessen

Gerichtsbarkeit sich dieser Mitgliedstaat unterworfen hat.

Der BGH äußerte darüber hinaus sogar Zweifel an der

Anwendbarkeit des Art. 344 AEUV an sich:

Art. 344 AEUV betreffe nach Gegenstand und Zielsetzung

keine Streitigkeiten zwischen einem Einzelnen

und einem Mitgliedstaat.

Ferner betreffe Art. 344 AEUV nur Streitigkeiten

über die Auslegung und Anwendung der Verträge, nicht

aber Entscheidungen im Schiedsverfahren, die alleine

aufgrund von bilateralen Investitionsabkommen („BIT“-

Abkommen) gefällt worden seien.

Nicht zuletzt, so der BGH, könne aus der in Art. 344 AEUV

geschützten Autonomie des Rechtssystems der EU, deren

Wahrung der EuGH sichere, nicht gefolgert werden, dass

Art. 344 AEUV die Entscheidungskompetenz des EuGH für

jegliche Rechtsstreitigkeiten schütze, in der Unionsrecht zur

Anwendung kommen könne. Dies gelte nur insoweit, als die

Mitgliedstaaten die in den Unions verträgen vorge sehenen

Verfahren vor dem EuGH in Anspruch nehmen müssten. Dies

sei vorliegend nicht der Fall, da die Unions verträge kein

gerichtliches Verfahren vorsähen, das Inves toren wie

Achmea BV. ermögliche, gegenüber einem EU- Mitgliedstaat

den Schadensersatz anspruch aus einem „BIT“- Abkommen

vor den Unions gerichten geltend zu machen.

Trotz dieser und anderer Bedenken bezüglich der

Anwendbarkeit des Unionsrechts (auch im Hinblick auf

die Frage, ob Art. 267 AEUV oder das Diskriminierungsverbot

des Art. 18 Abs. 1 AEUV der im o.g. „BIT“-

Abkommen vereinbarten Schiedsgerichtsklausel überhaupt

entgegenstehen) legte der BGH gleichwohl dem

EuGH im Vorabentscheidungsverfahren nach Art. 267

AEUV die Frage der Vereinbarkeit von Schiedsgerichtsklauseln

mit Unionsrecht wegen der zahlreichen

bilateralen Investitionsschutzabkommen zwischen EU-

Mitgliedstaaten mit ähnlichen Schiedsgerichtsklauseln –

es gibt derzeit 196 dieser „BIT“-Abkommen, wobei die

Bundesrepublik Deutschland Partei solcher Abkommen

mit 14 anderen EU-Mitgliedstaaten ist – vor.

Das Verfahren vor dem EuGH

Im Verfahren vor dem EuGH hatten neben den Parteien

wegen der grundsätzlichen Bedeutung des Rechtsstreits

15 EU-Mitgliedstaaten sowie die EU-Kommission Erklärungen

abgegeben.

Der Generalanwalt am EuGH Melchior Wathelet

hatte sich in seinem Schlussantrag vom 19.09.2017

zugunsten der Intra-EU Investitionsschutzklauseln ausgesprochen.

Wörtlich lautet sein Vorschlag unter Rn. 273

des Schlussantrags:

„Die Artikel 18, 267 und 344 AEUV sind dahin auszulegen,

dass sie der Anwendung eines Mechanismus zur

Beilegung von Streitigkeiten zwischen einem Investor und

einem Staat nicht entgegenstehen, der durch ein vor dem

Beitritt eines der Vertragsstaaten zur Europäischen Union

geschlossenes bilaterales Investitionsabkommen eingeführt

wurde und nach dem ein Investor eines Vertragsstaats bei

einer Streitigkeit über Investitionen in dem anderen Vertragsstaat

gegen Letzteren ein Verfahren vor einem Schiedsgericht

einleiten darf.“

Die tschechische, die ungarische sowie die polnische

Regierung erklärten sich mit dem Schlussantrag des

Generalanwalts nicht einverstanden und forderten eine

Wiederaufnahme des Verfahrens, die das Gericht jedoch

zurückwies.

Das „Achmea“-Urteil des EuGH vom 6.03.2018

Da die Richter des EuGH in der überwiegenden Zahl der

Fälle den Schlussanträgen des Generalanwalts folgen,

dessen Schlussanträge unparteilich und unabhängig zu

erfolgen haben, kam das Urteil des EuGH eher überraschend.

Denn die Richter des EuGH sehen Schiedsgerichtsklauseln

wie die in Art. 8 des in Rede stehenden

„BIT“-Abkommens als mit dem EU-Recht unvereinbar an.

Artikel 267 und 344 AEUV seien dahingehend auszulegen,

dass sie, wie der EuGH in Rn. 60 wörtlich feststellt, „einer

Bestimmung in einer internationalen Übereinkunft

zwischen den EU-Mitgliedstaaten wie Art. 8 des BIT entgegenstehen,

nach der ein Investor eines dieser Mitgliedstaaten

im Fall einer Streitigkeit über Investitionen in dem

anderen Mitgliedstaat gegen diesen ein Verfahren vor dem

Schiedsgericht einleiten darf, dessen Gerichtsbarkeit sich

dieser Mitgliedstaat unterworfen hat“. Das Unionsrecht sei

„als Teil des in jedem EU-Mitgliedstaat geltenden Rechts

als auch als einem internationalen Abkommen zwischen

585

SPOTLIGHT ON NUCLEAR LAW

Spotlight on Nuclear Law

Arbitrary-peaceful? Consequences of the “Achmea” decision of the ECJ also for the ICSID arbitration of Vattenfall? ı Ulrike Feldmann


atw Vol. 63 (2018) | Issue 11/12 ı November/December

SPOTLIGHT ON NUCLEAR LAW 586

den EU-Mitgliedstaaten entsprungen anzusehen“. Für den

vorgelegten Rechtsstreit bedeute dies, dass das in Art. 8

des „BIT“-Abkommens vorgesehene Schiedsgericht ggf.

das Unionsrecht und insbesondere die Bestimmungen

über die Grundfreiheiten, u.a. Niederlassungsfreiheit und

Kapitalverkehrsfreiheit, auszulegen oder sogar anzuwenden

hätte (Rn. 42 des EuGH-Urteils).

Die Richter des EuGH sehen den BGH auch nicht als

„Gericht eines Mitgliedstaates“ iSv. Art. 267 AEUV an, da

das dem Rechtsstreit zugrundeliegende „BIT“-Abkommen

nicht Teil des in den Niederlanden und in der Slowakei

bestehenden Gerichtssystems sei. Folglich sei der BGH

auch nicht befugt, den EuGH um Vorabentscheidung nach

Art. 267 AEUV zu ersuchen.

Zwar erkennt der EuGH ausdrücklich die Handelsschiedsgerichtsbarkeit

sowie die Patentgerichtsbarkeit an,

bemängelt jedoch im vorliegenden Fall, dass die Möglichkeit

der Zuweisung von Streitigkeiten durch das in Art. 8

des „BIT“-Abkommens vorgesehene Schiedsgericht zu

einer Einrichtung, die nicht Teil des Gerichtssystems der

Union ist, in einer Übereinkunft (dem „BIT“-Abkommen)

vorgesehen ist, die nicht von der Union, sondern von den

EU-Mitgliedstaaten geschlossen wurde. Der EuGH fürchtet

um die effektive Durchsetzung des Unionsrechts.

Das Urteil ist in der Presse bereits als „Generalabrechnung“

mit Schiedsgerichtsverfahren bezeichnet

und als Anlass für die Forderung genommen worden, den

„Irrweg der Investitionsschutz-Paralleljustiz im Internationalen

Recht“ zu beenden. Auf jeden Fall führt das

EuGH-Urteil zu großer Verunsicherung auf Seiten der an

„BIT“-Abkommen beteiligten EU-Mitgliedstaaten wie auch

auf Seiten der Investoren. Die Verunsicherung wird im

Übrigen dadurch verstärkt, dass die für den Intra-EU-

Investitionsschutz zuständige Fachebene der EU-Kommission

vor einigen Monaten angekündigt haben soll, dass die

EU-Kommission den Mitgliedstaaten voraussichtlich die

gemeinsame Aufhebung ihrer Investitionsschutzverträge

mit anderen EU-Mitgliedstaaten vorschlagen wird, sofern

die EU-Kommissare den entsprechenden Vorschlag der

Kommissions-Fachebene unterstützen. Bekannt geworden

ist bislang allerdings nicht, ob das Ende schiedlichfriedlicher

Konfliktlösung bei Investitionsstreitigkeiten

tatsächlich von der EU-Kommission versucht wurde

einzuläuten.

Folgen für das ICSID-Verfahren von Vattenfall

Obschon das EuGH-Urteil vom 06.03.2018 sich expressis

verbis nur auf Übereinkommen zwischen EU-Mitgliedstaaten

bezieht, wird von verschiedenen Seiten (z.B.

EU-Kommission, Bundesregierung, Bundestags fraktionen)

die Frage aufgeworfen, ob das Urteil auch für Abkommen

wie z.B. die Energiecharta gilt, bei denen die EU selber

Vertragspartei ist. Die Energiecharta ist Grundlage des

Verfahrens ARB/12/12 der schwedischen Vattenfall AB

sowie der Kernkraftwerk Brunsbüttel GmbH & Co., der

Kernkraftwerk Krümmel GmbH sowie der Vattenfall Europe

Nuclear Energy GmbH (VENE) und der Vattenfall GmbH

vor dem Internationalen Zentrum zur Beilegung von

Investitionsstreitigkeiten/International Centre for Settlement

of Investment Disputes (ICSID), das zur Weltbank in

Washington D.C. gehört. Das ICSID wurde 1965 durch die

ICSID-Konvention gegründet, der 153 Staaten angehören.

Gegenstand der Klage der o.g. 5 Gesellschaften vor dem

ICSID-Schiedsgericht ist die Frage, ob die 13. AtG-Novelle

gegen die Verpflichtungen der Bundesrepublik Deutschland

aus dem Vertrag über die Energiecharta verstößt.

Das ICSID-Schiedsgericht hatte seine Entscheidung

ursprünglich für das 1. Quartal 2018 angekündigt. Das

„Achmea“-Urteil hatte das Schiedsgericht jedoch bewogen,

eine Reihe zusätzlicher Fragen an die Parteien zu richten

und diese aufgefordert, bis zum 23. April 2018 (einschließlich

Fristverlängerung ) Stellung zu nehmen.

Durch das „Achmea“-Urteil sieht sich die EU-

Kommission in ihrer zuvor bereits vertretenen Auffassung

bestätigt, dass Intra-EU-Schiedsverfahren auf der Grundlage

des Energiechartavertrages gegen EU-Recht verstoßen.

Diese Auffassung wird von der deutschen

Bundesregierung offenbar geteilt (s. Bundestagsdrucksache

19/ 2174). Sie hat in ihrer schriftsätzlichen Antwort

an das ICSID-Schiedsgericht vorgetragen, dass der Rechtssatz

aus dem „Achmea“-Urteil auch für den Energiechartavertrag

gelten müsse, das Unionsrecht also nicht

zulasse, dass die drei Vattenfall Gesellschaften sowie die

beiden – mittelbar vom schwedischen Staate kontrol lierten

deutschen – Betreibergesellschaften als Unter nehmen

des EU-Mitgliedstaats Schweden den EU- Mitgliedstaat

Deutschland vor dem ICSID verklagen können.

Zwischenentscheidung des ICSID

Das Schiedsgericht hat in seiner – bisher unveröffentlichten

– Zwischenentscheidung vom 31. August 2018

diese Auffassung dem Vernehmen nach zurückgewiesen.

Anders als im „Achmea“-Fall handele es sich bei dem in

Rede stehenden Rechtsstreit nicht um ein bilaterales

Investitionsschutzabkommen zwischen Deutschland und

Schweden, sondern die Klägerinnen beriefen sich

auf die Investitionsschutzklausel im völkerrechtlichen

Energiecharta-Vertrag, dem neben Deutschland und

Schweden auch die EU beigetreten sei. Die EU könne, so

das Schiedsgericht, nicht über die Anwendbarkeit des

Energiecharta-Vertrages entscheiden, in dem sie selber

Vertragspartei sei.

Da neben der Klage der Vattenfall-Gesellschaften noch

weitere Verfahren verschiedener Unternehmen aufgrund

des Energiecharta-Vertrages gegen andere EU-Mitgliedstaaten

anhängig sind, hat das ICSID-Schiedsgericht dies

offenbar zum Anlass genommen, seine Rechtsauffassung

auffällig ausführlich zu begründen.

Ausblick

Nachdem insoweit die Frage der Bedeutung des

„ Achmea“-Urteils auf Verfahren nach dem Energie charta-

Vertrag vom ICSID-Schiedsgericht in Washington offenbar

geklärt wurde, ohne dass damit allerdings auch ein

„schiedlich-friedlicher“ Prozessausgang schon vorprogrammiert

wäre, dürfte einer endgültigen Entscheidung

des ICSID nun nichts mehr im Wege stehen. Die Bundesregierung

hat (s. Bundestagsdrucksache 19/2174) bereits

auf die Überprüfungsmöglichkeiten – Auslegung des

Schiedsspruchs, Wiederaufnahme des Verfahrens bei

schwerwiegenden neuen Tatsachen sowie Aufhebung –

gemäß den Artikeln 51 – 53 ICSID-Konvention hingewiesen.

Eine Berufungsmöglichkeit besteht allerdings

nicht. Auch ist die Aufhebung eines Schiedsspruchs nur

unten den engen Voraussetzungen des Art. 53 ICSID-

Konvention möglich. Wird der Schiedsspruch nicht

aufgehoben, ist er zwischen den Parteien des Verfahrens

(inter partes) endgültig und bindend. Er kann im Falle des

Obsiegens von Vattenfall in allen ICSID-Vertragsstaaten

vollstreckt werden, und zwar in das Vermögen der

Bundesrepublik Deutschland, soweit dieses Vermögen

nicht hoheitlichen Zwecken zu dienen bestimmt ist.

Author

Ulrike Feldmann

Berlin, Germany

Spotlight on Nuclear Law

Arbitrary-peaceful? Consequences of the “Achmea” decision of the ECJ also for the ICSID arbitration of Vattenfall? ı Ulrike Feldmann


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Release-Category-Oriented Risk

Importance Measure in the Frame of

Preventive Nuclear Safety Barriers

Juan Carlos de la Rosa Blul and Luca Ammirabilea

1 Introduction and outline In the regulatory framework regarding nuclear installations dedicated to

electricity production, one of the fundamental design principles consists of the so-called Defence-in-Depth [1]: a set of

multiple and independent barriers arranged in a series configuration by which undesired events should be intercepted

before yielding undesired consequences. These barriers can be either physical (fuel cladding, reactor cooling system,

containment structure, safety systems, etc.) or non-physical (surveillance procedures, emergency guidelines, etc.).

[11], Maintenance Rule [12] or Risk

Monitor [13]. These indicators look at

hierarchically order the plant SSCs

according to their impact on the overall

CDF or CDF variations depending

on the availability or failure of the

SSC.

In terms of mitigating severe accidents,

the number of safety barriers is

significantly lower: containment or

reactor building as a value type of

barrier, Severe Accident Management

Guidelines (SAMGs) as administrative,

and the use of several PRA

applications based on PRA Large

Early Release Frequency (LERF) as

figure of merit.

587

ENVIRONMENT AND SAFETY

| | Fig. 1.

Nuclear Safety Performance Pillars.

Most safety barriers rely on a deterministic

assessment, i.e., they have been

designed against predetermined challenging

events assumed in the initial

design or afterwards through Design

Modifications (see, e.g. [2] to [4]).

To provide with a single overview

of the entire list of measures taken to

achieve an adequate safety level of

performance and highlighting potential

areas of improvement, the different

safety related field of activities can

be arranged upon different safety

pillars (see Figure 1), each of them

involving the application of several

and different in nature fields of

activities.

For the sake of comparison, the

concept of nuclear safety barriers may

be generically extended to these fundamental

safety pillars and to their

comprised field of activities. In doing

so, each of them may be twofold classified

upon whether the activity is a

value (physical) or a practice (administrative),

and whether it aims at preventing,

correcting (i.e. controlling) or

mitigating (see Figure 2) an undesired

event. In addition to this, each

barrier put in place can also be

analysed and classified according to

weather it has been designed based on

deterministic or probabilistic grounds.

In terms of the safety approach

method, Probabilistic Risk/Safety

Assessment (PRA/PSA) applications

have been gradually incorporated into

the analysis of the safety barriers (see,

e.g. [5] and [6]), falling under the

general category of risk-informed

decision-making processes [7]. PRA

more extended figure of merit is the

Core Damage Frequency (CDF, sum of

the frequency of the scenarios considered

in a specific PRA model leading

to core damage). Risk indicators

are mostly based on CDF such as Fussell-Vesely’s

measure of importance

(F-V), Risk Achievement/Reduction

Worth (RAW/RDW), or simply the

CDF variation [8], meaning they are

designed to prevent core damage.

Some of the main applications where

CDF is an input are the Reactor Oversight

Process (ROP) [9], Mitigating

Systems Performance Indicators

( MSPI) [10], Safety Evaluations

related with Design Change Packages

| | Fig. 2.

Ranging of safety-related activities along an accident sequence.

Environment and Safety

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENVIRONMENT AND SAFETY 588

2 Analysis and classification

of nuclear safety

barriers

Coming back to Figure 1, the different

activities taken to ensure an adequate

safety level may be classified upon

three different areas or top-level

pillars of activities: Safety Design and

Performance, Management Improvement

and Safety Assessment.

If the IAEA design and operational

safety requirements safety standards

[14] and [15] are taken as a comprehensive

list, its 96 requirements

(removing 19 requirements not related

to the safety performance of the plant)

might be classified in 74 requirements

under the pillar of safety design

and performance, 11 requirements

addressing management improvement,

and 11 requirements under the category

of safety assessment.

• Safety Design and Performance

Within this safety pillar, the activities

directly affecting the safety

response of the plant are classified.

By directly it is meant that the

object of the activity is the humanmachine

system made up of safetyrelated

SSC and human actions

actuating on them. Such activities

comprise design technical specifications,

testing, maintenance,

design principles such as independency,

redundancy, etc., but

also emergency procedures, administrative

procedures such as

maintenance, surveillance and

inspection, etc.

Most nuclear countries have nowadays

implemented a set of common

standards regarding safety design

(see [14] and [15]), most of which

rely on a deterministic approach

even if probabilistic results are becoming

more and more integrated

into several aspects of the design.

The 74 IAEA safety-performancerelated

design and operational

requirements found on [14] and

[15] related to the safety design and

performance category may be in

turn classified and simplified as

follows:

• Fundamental design criteria

PP

Defence in depth underlying

criteria (multi-barriers, independency,

redundancy, etc.)

PP

Single-failure criterion

PP

SSC safety classification

PP

Assumed Postulated Initiating

Events (PIEs)

PP

Safety margins

• Safety procedures

PP

Abnormal and failure procedures

PP

Emergency procedures

PP

SAMGs

PP

Maintenance, surveillance and

inspections

PP

Operational limits and conditions

for safe operation

• Management Improvement

This top safety pillar groups those

activities indirectly modifying the

human- machine system safety performance.

By indirectly it is meant

that the object of the activity is not

the human- machine system performing

the safety function in

charge of preventing, correcting

(i.e. controlling) or mitigating the

adverse condition, but those activities

whose performance is expected

to ultimately impact that

system. The connection between

the object of a management improvement

activity and the humanmachine

system usually relies on

the performance analysis of different

aspects dealing with the human

organization or SSCs in charge of

performing the safety functions.

The importance of the available

tools for continuously improving

the safety performance of the plant

has long been stressed; see for

instance [16] and [17]. The most

relevant tools indirectly improving

the safety performance of the plant

are the followings:

• Operating Experience

• Nuclear Safety Culture

• Risk Oversight Process

• Performance Indicators

• PRA applications

• Trending and Performance

Analysis

• Corrective Action Program

• Benchmarking and Self-Assessment

• Observation program

• Safety Assessment

By safety assessment it is meant

any activity in charge of ensuring

that the plant meets with the

design safety requirements and

| | Fig. 3.

Relationship between the different Nuclear Safety Pillars.

verifies the conformity of the plant

with the quantitative safety design

objectives.

The most relevant activities dealing

with safety assessment are

hereafter indicated for clarification:

• Safety Analysis (analysis of

plant response against adverse

situations departing from normal

conditions):

PP

Probabilistic Safety (or Risk)

Assessment

PP

Deterministic Analysis

• External Reviews (e.g. IAEA,

WANO, INPO) and Independent

Oversight;

NPP safety performance can therefore

be schematically considered according

to Figure 2, where the actions directly

in charge of responding to adverse

conditions are carried out by the human-machine

system, the performance

of this system being in turn affected

by a set of management tools.

And as a cross-sectional set of activities,

the safety assessment tool which

applies at many different levels with

the aim of ensuring the compliance of

the NPP design and performance with

the expected safety design objectives.

As already introduced in section 1,

the different activities belonging to

the three safety pillars can be classified

upon whether they look at preventing

accident conditions – before

the accident occurs –, correcting the

accident – after the onset of the

accident – or mitigating the accident –

to limit the undesired consequences

once the core has partly or fully

damaged – (Figure 3). They can also

be classified in values and practices

depending on whether they look at

physically modifying or managing the

human-machine system respectively.

Table 1 arranges the fundamental

categories of activities under the three

different safety pillars according to

this twofold classification.

Environment and Safety

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Prevention Correction Mitigation

Values

Practices

DiD criteria

Single-failure criterion

Safety-classification-driven design criteria

PIEs

LCOs

Safety Analysis

Abnormal and failure procedures

Risk Monitor

Maintenance, surveillance and inspections

Maintenance Rule PRA applications

OE

Nuclear Safety Culture

ROP

Trending and Performance Analysis

Corrective Action Program

External Reviews

| | Tab. 1.

Arrangement of the NPP safety activities.

Table 2 lists these barriers along

with their type and underlying safety

approach.

3 Risk-based mitigating

safety barriers

After the Fukushima-Daiichi nuclear

accident, considerable efforts have

been put in place to provide nuclear

plants with new equipment to mitigate

beyond-core-melt accidents, see

e.g. [18]. These efforts resulted in

Safety Margins

DiD physical barriers

Single-failure criterion

Safety-classification-driven design criteria

Safety Systems

Emergency procedures

Safety barriers / activities Type Criteria

DiD criteria

Single-failure

Safety classification

PIEs

Prevention

Correction

Mitigation 1 D, P 1

Prevention

Correction

Prevention

Correction

Mitigation 1

Prevention

Correction

Mitigation 1

Safety Margins Correction D

Maintenance, Surveillance and Inspections Prevention D, P 2

Maintenance Rule Prevention P

Limit Condition for Operation (LCO) Prevention D

Abnormal, failure and EPGs

Prevention

Correction

PRA applications Prevention P

OE Prevention D

Nuclear Safety Culture Prevention D

ROP Prevention P

Trending and Performance Analysis Prevention D

CAP Prevention P

External Reviewers Prevention D, P

Safety Systems Correction D

Physical Barriers

Correction

Mitigation

Mitigating Equipment Mitigation D, P

Safety Analysis

Correction

Mitigation

SAMGs Mitigation D

| | Tab. 2.

Criteria and rationale / parameter underlying the safety barriers / activities.

backfitted mitigating systems, fixed or

portable, in charge of maintaining

the cooling capability of the fuel in

the reactor vessel core, reducing the

flammable gases and transferring

the heat outside the containment or

reactor building.

As shown in the former tables, the

majority of safety barriers look at preventing

the occurrence of an accident.

As shown in Table 2, the majority of

the prevention safety barriers have

D

D

D, P

D

D

D, P

DiD physical barriers

Safety-classification design criteria 1

PIEs 1

Mitigating equipment 1

SAMGs

been designed taking account only

design safety criteria. When a probabilistic

safety approach is instead considered

among the safety criteria in

designing such prevention safety

barriers, the underlying figures of

merit are based on the Core Damage

Frequency (CDF) and the Large Early

Release Frequency (LERF) and Large

Release Frequency (LRF). This will be

the case, for instance, of design improvements

aimed at improving the

safety response of a system featuring a

significant contribution to the CDF,

such as passive Reactor Coolant Pump

seals preventing a coolant leakage

during Extended Loss of Alternate

Current scenarios.

LERF/LRF comprises those accidents

resulting in a radioactive release

higher than a specific magnitude

threshold (depending on the national

regulatory framework, this value can

be 3 %, 10 %, etc., of the initial volatile

fission products stored in the fuel

assemblies and released to the environment,

see e.g. Ref. [19]) at a

certain time, i.e. LERF, or no matter

the releasing time, i.e. LRF (as for

the timing threshold magnitude, it

depends on the national dispositions

as well).

International recommendations

for existing plants do not usually

specify maximum LERF frequencies.

For new plants, these categories of

events are required to be practically

eliminated, see e.g. [20] and [21].

The extended practice is to regulate

on the LERF/LRF variations caused

by design changes in plant and

inspection findings. For instance, the

Spanish Consejo de Seguridad Nuclear

sets acceptable ranges for backfitting

designs, see Figure 4 (where FGLT

and FGL stand for LERF and LRF

respectively) as described in [22]

adapted from [11]) and Table 3 aimed

at classifying performance indexes

1) Only in some limited,

more recent designs

2) Only in limited NPPs

ENVIRONMENT AND SAFETY 589

Environment and Safety

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENVIRONMENT AND SAFETY 590

| | Fig. 4.

Example of backfitting design acceptance according to Level 2

figures-of-merit.

and findings within the US NRC ROP

safety barrier [23].

It is important to note that LERF/

LRF figures-of-merit only include a

small set of sequences featuring the

highest consequences of the whole

spectrum of severe accidents. This

means that most of the accidents

leading to radioactive releases will

not be taken into account in

mitigating- oriented risk-based preventive

measures.

3.1 Discussion on LERF/LRF

figures of merit

Nuclear safety design approach of

existing 2 nd generation NPPs was

purely based on deterministic principles.

Such approach put the stress

on a set of few dominant envelop

scenarios driving the entire safety

design of the plant. Due to the deterministic

nature of the design approach,

the selection of the scenarios

was limited to those challenging the

plant the most. However and as

Colour Importance CD probability increase

(ΔCD)

initially revealed by the TMI-2 nuclear

accident, there were other scenarios

not foreseen in the design whose

damage could be lower yet featuring

higher frequencies of occurrence.

Such approach solely relying on a

set of preconceived, deterministic,

bounding yet limited set of accidents

was the gap to be bridged by a

prob abilistic approach. Probabilistic

analysis sets an objective traceable

basis for identifying accidents that

challenge the plant the most in terms

of risk, i.e. frequency versus consequences.

If the consequence is fixed

for a given set of scenarios, then the

risk directly shifts to the frequency.

This is performed by the Level 1 PRA

considering one single type of consequence,

i.e. code damage, thereby

focusing only on the different accident

frequencies. By ordering the accidents

upon their featured frequencies, any

Level 1 PRA application would prioritize

safety improvements according

to their impact on the total risk, that is

to say, according to a reduction on the

core damage frequency.

The inclusion of a probabilistic

approach therefore opened the spectrum

of accidents to be considered for

safety purposes to also those less

challenging in terms of damage progression,

but more frequent, in the

end, featuring a high level of risk. By

applying such comprehensive tool to

safety, the key concept was put on

lowering the total risk rather than

addressing specific bounding accidents.

As a matter of fact, safety

efforts directed towards double-ended

guillotine Large Break LOCAs were

expanded to comprise also other less

challenging accidents like Small Break

LOCAs, Loss of Off-site Power

scenarios, etc. In other words, safety

design reoriented the initial bias that

focused safety onto a specific preselected

frame of accidents towards

objective, frequency-driven accidents,

where any pre-assessment whatsoever

on the spectrum of accidents (other

than a low frequency screening-out

value) was not applicable anymore.

Coming back to the concept of

risk, and focusing on Level 2 PRA, the

figures of merit driving any potential

Large Early Release probability increase

(ΔLER)

Green Very low ΔCD < 10 -6 ΔLER < 10 -7

White Low – moderate 10 -6 < ΔCD < 10 -5 10 -7 < ΔLER < 10 -6

Yellow Significant 10 -5 < ΔCD < 10 -4 10 -6 < ΔLER < 10 -5

Red High 10 -4 < ΔCD 10 -5 < ΔLER

| | Tab. 3.

MSPIs and findings classification included in US NRC ROP system [23].

design improvement in terms of prevention

are limited to the large and

early release frequencies. Such large

and early in terms of radioactive

releases mean the most challenging

bounding severe accidents. In terms of

Level 1 PRA, to limit the figure of

merit to large and early releases

would be as if taking from the entire

spectrum of accidents leading to core

damage only those featuring early

occurrence and extended core damage.

As a conclusion, the implementation

of PRA tools derived in a broader

spectrum of accidents leading to core

damage accounted for when looking

at prioritizing efforts towards nuclear

safety improvements. But this shift

of prioritizing safety improvements

towards SSCs according to their contribution

to core damage has not been

translated to the severe accident field,

i.e., LERF and LRF continues to focus

the attention on the consequence of

the accident no matter how frequent

they are likely to occur, therefore

missing two important pieces of information

from a safety perspective

( already accounted for in Level 1 PRA

scenarios), namely (i) that less severe

accidents – whether in terms of magnitude

or time – are still severe accidents;

and partially drawn from the

first issue, (ii) that the more frequent

the scenario is, the more attention

should be paid to as the higher its risk

will likely be (because the undesired

consequences will still be unacceptably

high).

Furthermore, and in accordance

with the ALARA principle, it will be

convenient to track all the scenarios

that derive into a radioactive release;

otherwise, most of the sequences

would remain out of control in the

range from core damage to the source

term release. For example, if 50 % of

the CDF evolves into a source term

release, and LERF and LRF contributes

in 5 % to the source term, this means

that 95 % of the scenarios involving

source term release to the environment

are not keeping tracked by any of

the safety indicators and practices,

meaning that 47.5 % of the accidents

leading to core damage will not be

susceptible to direct safety improvements

of any kind.

4 Level 2 PRA.

Methodology and

insights

In order to have a better understanding

of the new metrics proposed,

let us review some insights related

with Level 2 PRA.

Environment and Safety

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Figure 5 depicts the level 2 PRA

flowchart, where at the top, first

row, the main prescriptive tasks are

indicated. The rest of the methodology

is intended just to step from one

task to the next one, i.e., they are userdependent:

• First stage. First binning process.

As a back-end methodology, Level 2

starts from the results coming from

Level 1 (first main block), and after

asking the sequences about the

containment systems performance

not included in Level 1 (through

the so-called Bridge Trees, BT in

the flowchart), the outputs are

classified into Plant Damage States

(PDSs) through the use of the PDS

Logic Tree (PDS LT) which classifies

the sequences according to

their equal evolution in the containment.

• Second stage (prescriptive). This

is the Level 2 itself: given that containment

and Reactor Pressure

Vessel (RPV) phenomena are

subjected to a high degree of

uncertainty, one PDS may evolve in

different manners (this means that

in the absence of epistemic uncertainties,

one PDS would obviously

mean one Release Category). Containment

Event Tree (CET), also

named Accident Progression Event

Tree (APET), is the white box

through which analyzing and

propagating the input sequences

(PDS) to the output sequences

( Release Categories, RCs).

• Third stage. Given the large number

of outputs coming from the

CET, it is suitable to reclassify them

according to a similar released

source term characterisation.

This is done by the RC Logic Tree

( RC LT).

• Fourth stage. In order to obtain

the source term associated to each

RC, the most frequent sequence is

chosen as representative for the RC

and simulated with a severeaccident

system simulation code

such as MELCOR, MAAP or ASTEC,

which gives us the RC characterization

(in terms of time, magnitude,

and composition).

• Fifth stage. An eventual filtering

process is applied to compute the

LERF and LRF categories by focusing

only in those RCs meeting with

certain criteria regarding timing

(early) and magnitude (large).

5 Severe-accident risk

significant measure

In order to fill this gap, a new indicator

related with all the sequences

| | Fig. 5.

Level 2 PRA flowchart.

deriving in a source term release is

proposed to be incorporated into the

probabilistic safety measures applied

at the prevention level.

The indicator is just an adaptation

of the Fussell-Vesely importance

measure, defined as the relative contribution

to the reference risk of all

the minimal cut sets belonging to one

basic event:

(1)

where MCS stands for Minimum Cut

Set, and BE is the Basic Event belonging

to the SSC under analysis. In this

case, the importance would have to be

propagated to the source term release.

If the source term magnitude is not

taken into account – assuming that

even a small, not-early release, e.g.

TMI-2, still leads to high undesired

consequence, the risk associated to

one specific sequence, will only be

driven by its frequency.

When attempting to convert a

sequence into a source release in

terms of relative frequency, from a

mere quantitative point of view, this

index should only replace p(MCS) by

p(RC), where RC is the release category,

i.e. the sum of all accidents

featuring similar source term characterisation

in timing, magnitude and

fission product chemical speciation:

(2)

where RCF stands for the total Release

Categories Frequency.

But there are several reasons to

maintain p(MCS) in the equation:

• Since p(MCS) is the Core Damage

indicator, it is convenient to keep

this term in order to track its

associated frequency.

• p(MCS) and p(RC) are independent.

• p(RC) has a significant uncertainty;

this is not the case for

p(MCS).

• Calculation of p(MCS) can be

computed by a probabilistic computer

software, while the RCs can

be computed by a different way (in

a non-integrated L1 – L2 PRA).

• P(RC) is a parameter related not

with the BE but with the PDS.

Therefore, it is suitable to implement

p(RC) as a weighting factor of

p(MCS). Furthermore, considering

that one MCS is split into different

PDSs and that one PDS is related with

a specific CET layout (thus a specific

RC conditional frequency (here

named f c )), then:

(3)

If MCSs are extended to the containment

system consideration, i.e., after

the BTs have been applied, then one

interface MCS, here named MCS*,

will be related with one PDS. Further,

if it is considered that in order to

obtain a fraction corresponding to

the total RC frequency, the denominator

should be the Source Terms

Fre quency (STF), by removing the

non-failure categories associated

frequency the following final equation

is obtained:

(4)

ENVIRONMENT AND SAFETY 591

Environment and Safety

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


atw Vol. 63 (2018) | Issue 11/12 ı November/December

ENVIRONMENT AND SAFETY 592

6 Summary

and conclusions

Activities and countermeasures related

to nuclear safety currently

include results coming both from

deterministic and probabilistic analyses.

These activities can be arranged

in three categories depending on

whether they are implemented before

the accident begins (prevention),

once the accident has already started

(correction, i.e. control) or after the

fuel has been damaged (mitigation).

By analysing the fundamental set of

nuclear safety activities, a gap has

been identified in the prevention area

applied to the field of severe accidents.

This gap consists of limiting riskoriented

measures related to accidents

involving core damage to only

those leading to the worst consequences,

hence to driven risk as a

consequence-driven concept rather

than as a frequency-driven, just like

applied in the solid field of Level 1

PRA. Furthermore, by applying such

approach the frequency of the remaining

accidents deriving in lower yet still

highly significant radioactive releases

is not being tracked. This means that

any risk-informed decision making

will not take into account this set of

severe accidents which in the end

contribute the most to the radioactive

releases given the relative low values

features by LERF/LRF categories.

In addition, safety improvements to

reduce that residual risk brought by

the radioactive release accidents other

than LERF/LRF will not be considered

as no figure of merit exists to follow

them up.

A new metrics to be used in riskdecision

making processes looking at

the field of severe accidents has been

suggested. This importance measure

is based on the Fussell-Vesely factor

as currently used for core damage

applications. This risk importance

measure does not limit to the most

challenging accidents from the consequence

stand point but it comprises

the entire set of accidents leading to

radioactive releases according to their

featured frequency, just as the equivalent

Level 1 PRA figure of merit of CDF

does. This risk importance measure

will allow prioritizing safety improvements

in the field of severe accidents

according to the contribution to the

total radioactive releases, hence shifting

from a consequence-driven to a

frequency-driven indicator. In addition,

the remaining severe accidents

not falling under LERF/LRF and

featuring a much larger frequency of

radioactive releases will not be

neglected in the assessment process of

any potential safety improvement and

design modification looking at improving

the plant response against

severe accidents.

References

[1] International Nuclear Safety Advisory

Group (INSAG), Defence in Depth in

Nuclear Safety, INSAG-10 (1996).

[2] International Atomic Energy Agency

(IAEA), Modifications to Nuclear Power

Plants, IAEA NS-G-2.3 (2001).

[3] United States Nuclear Regulatory

Commission, Code of Federal

Regulations, 10 CFR 50.59

(last reviewed on 2017).

[4] Consejo de Seguridad Nuclear, Guía de

Seguridad 1.11, Modificaciones de

diseño en centrales nucleares (2002).

[5] International Atomic Energy Agency

(IAEA), Applications of Probabilistic

Safety Assessment (PSA) for nuclear

power plants, 2001.

[6] Wu, J.S., Apostolakis, G. E., Experience

with probabilistic risk assessment in the

nuclear power industry, Journal of

Hazardous Materials, Vol. 29, Issue 3,

1992.

[7] Zio E., Pedroni N., Panorama des

processus décisionnels tenant compte

du risque, Cahiers de la Sécurité

Industrielle, Fondation pour une

Culture de Sécurité Industrielle, 2012.

[8] Cheok, M.C., Parry, G.W., Sherry, R.R.,

Use of importance measures in riskinformed

regulatory applications,

Reliability Engineering and System

Safety, Vol. 60, Issue 3, 1998.

[9] Nuclear Regulatory Commission (NRC),

Reactor Oversight Process, NUREG-1649

(2006).

[10] International Atomic Energy Agency

(IAEA), Operational safety performance

indicators for nuclear power plants,

IAEA-TECDOC-1141, 2000.

[11] United States Nuclear Regulatory

Commission, An approach for using

probabilistic risk assessment in riskinformed

decisions on plant specific

changes to the licensing basis,

Regulatory Guide 1.174, 2011.

[12] Yingli Zhu, Criteria for Assessing the

Quality of Nuclear Probabilistic Risk

Assessments, Massachusetts Institute

of Technology (2004).

[13] Nuclear Energy Institute (NEI), Risk

Monitors. The State of the Art in their

Development and Use at Nuclear Power

Plants, NEA/CSNI/R(2004)20, 2004.

[14] International Atomic Energy Agency

(IAEA), Safety of Nuclear Power Plants:

Design, SSR-2/1, Rev.1, 2016.

[15] International Atomic Energy Agency

(IAEA), Safety of Nuclear Power Plants:

Commissioning and Operation, SSR-

2/2, 2011.

[16] International Atomic Energy Agency

(IAEA), The Management System

for Nuclear Installations, GS-G-3.5,

2009.

[17] International Atomic Energy Agency

(IAEA), Leadership and Management

for Safety, GSR Part 2, 2016.

[18] ENSREG EU stress tests and follow-up,

visited on 16 July 2018,

http://www.ensreg.eu/EU-Stress-Tests.

[19] B. Chaumont, E. Raimond, L2 PSA

methods harmonization, 3 rd European

Review Meeting on Severe Accident

Research (ERMSAR), Nesseber

(Bulgaria), 2008.

[20] Nuclear Energy Agency Organisation

For Economic Co-Operation And

Development (OECD), Implementation

of Defence in Depth at Nuclear Power

Plants, NEA No. 7248, 2016.

[21] International Atomic Energy Agency

(IAEA), Considerations on the

Application of the IAEA Safety

Requirements for the Design of Nuclear

Power Plants, IAEA-TECDOC-1791,

2016.

[22] Consejo de Seguridad Nuclear (CSN),

Criterios básicos para la realización de

aplicaciones de los Análisis Probabilistas

de Seguridad, Guía de Seguridad 1.14,

2007.

[23] https://www.nrc.gov/reactors/

operating/oversight.html,

visited on 16 July 2018.

Authors

Juan Carlos de la Rosa Blul

Luca Ammirabile

European Commission

DG Joint Research Centre – JRC

Directorate G – Nuclear Safety

& Security

Unit G.I.4 Reactor Safety &

Emergency Preparedness

Westerduinweg 3

1755 LE Petten,

The Netherlands

Environment and Safety

Release-Category-Oriented Risk Importance Measure in the Frame of Preventive Nuclear Safety Barriers ı Juan Carlos de la Rosa Blul and Luca Ammirabilea


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Position des Arbeitskreises „Szenarienentwicklung“

zur Thematik:

Wahrscheinlichkeitsklassen und

Umgang mit unwahrscheinlichen

Entwicklungen

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla,

J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf und J. Wollrath

Zusammenfassung Die Sicherheitsanforderungen [BMU 10] verlangen bei der Analyse von zukünftigen

Entwicklungen eines Endlagers und Endlagerstandortes die Unterscheidung hinsichtlich der Wahrscheinlichkeit ihres

Eintretens. Darüber hinaus forderte die nach dem Standortauswahlgesetz [STA 13] in 2013 eingesetzte Endlagerkommission

in ihrem Abschluss bericht [KOM 16] die Überprüfung der Einteilung in die Wahrscheinlichkeitsklassen

„wahrscheinliche“, „weniger wahrscheinliche“ und „unwahrscheinliche“ Entwicklungen und der Trennung in

„ wahrscheinliche“ und „weniger wahrscheinliche“ Entwicklungen.

In der Vergangenheit wurden in

Vorhaben zur Szenarienentwicklung

zwar wahrscheinliche und weniger

wahrscheinliche Szenarien abgeleitet

und auch das menschliche Eindringen

in ein Endlager untersucht, jedoch

keine unwahrscheinlichen Entwicklungen

berücksichtigt.

Der Arbeitskreis „Szenarienentwicklung“

(AKS) hat sich mit der Einteilung

von Entwicklungen in Wahrscheinlichkeitsklassen,

der Ableitung

von unwahrscheinlichen Szenarien

sowie mit deren Behandlung auseinandergesetzt

und die folgende

Position formuliert:

Der AKS vertritt die Auffassung,

dass die Einteilung von Entwicklungen

in Wahrscheinlichkeitsklassen

eine übliche Vorgehensweise ist und

dass eine solche Klassifizierung einen

wesentlichen Aspekt für die Optimierung

der Endlagerauslegung und die

Zusammenstellung von Argumenten

im Rahmen des Langzeitsicherheitsnachweises

darstellt sowie für die

allgemeine Diskussion ein hilfreiches

Unterscheidungsmerkmal sein kann.

Insgesamt ist die Einteilung in drei

Klassen ausreichend. Um eine weitere

Differenzierung in Klassen vorzunehmen,

sind verlässliche Daten notwendig,

die oftmals nicht vorliegen.

Die quantitative Vorgabe von Wahrscheinlichkeiten

für alle Aspekte der

unterschiedlichen Entwicklungen hält

der AKS für nicht praktikabel.

Nach Auffassung des AKS ist eine

umfassende, systematische Erfassung

von unwahrscheinlichen Szenarien

nicht möglich. Aus diesem Grund

empfiehlt der AKS, unwahrschein liche

Szenarien getrennt von einer systematischen

Entwicklung wahrscheinlicher

und weniger wahrscheinlicher Szenarien

zu behandeln.

In den Sicherheitsanforderungen

[BMU 10] wird für unwahrscheinliche

Entwicklungen, die zu hohen Strahlenexpositionen

führen können, eine

Optimierungsprüfung dahingehend

gefordert, ob eine Reduzierung der

Auswirkungen mit vertretbarem Aufwand

möglich ist. Hier vertritt der

AKS die Auffassung, dass Entwicklungen

im Zusammenhang mit Ereignissen

und Prozessen, die aufgrund

der Anwendung von Ausschlusskriterien

und Mindestanforderungen

im Standortauswahlverfahren am

zu untersuchenden Endlagerstandort

ausgeschlossen werden, im Rahmen

der geforderten Optimierungsprüfung

nicht weiter zu berücksichtigen

sind.

Der AKS hält es für zwingend

notwendig, eine Unterscheidung

zwischen unwahrscheinlichen Entwicklungen

mit einer Restwahrscheinlichkeit

und ausgeschlossenen

Entwicklungen vorzunehmen.

Der AKS stützt die Festlegungen

in den Sicherheitsanforderungen

[BMU 10], für unwahrscheinliche

Szenarien und Szenarien aufgrund

eines unbeabsichtigten menschlichen

Eindringens in ein Endlager auf

Grenzwerte für zumutbare Risiken

oder zumutbare Strahlenexpositionen

zu verzichten.

Stattdessen schlägt der AKS vor,

über folgende Optionen unwahrscheinliche

Entwicklungen mit einer

Restwahrscheinlichkeit abzuleiten:

• Unwahrscheinliche Ereignisse und

Prozesse, die im Rahmen der

Einteilung in Wahrscheinlichkeitsklassen

identifiziert wurden.

• Unwahrscheinliche Ausprägung

von Ereignissen und Prozessen,

die auf die Barrieren des Endlagersystems

wirken.

• Gleichzeitiges Versagen mehrerer

technischer Komponenten aufgrund

voneinander unabhängiger

Ursachen.

Über den Optimierungsgedanken

hinaus erscheint es nach Ansicht des

AKS zu Anschauungszwecken praktikabel,

eine begrenzte Auswahl von

unwahrscheinlichen Szenarien und/

oder What-If Fällen zusammenzustellen

und die Robustheit des Endlagersystems

und einzelner Komponenten

zu testen und darzustellen.

Für die What-If Fälle sind keine regulatorischen

Vorgaben notwendig.

Motivation/Sachstand

zur Thematik

Die Szenarienentwicklung ist die

Ableitung von potenziellen Entwicklungen

eines Endlagers für radioaktive

Abfälle, die hinsichtlich ihres

Eintretens, gemäß den Sicherheitsanforderungen

des Bundesministeriums

für Umwelt, Naturschutz, Bau und

nukleare Sicherheit (BMU) [BMU 10]

in die folgenden Wahrscheinlichkeitsklassen

eingeteilt werden:

• wahrscheinlich,

• weniger wahrscheinlich und

• unwahrscheinlich.

Die im Jahr 2013 nach dem Standortauswahlgesetz

eingesetzte Kommission

„Lagerung hoch radioaktiver Abfallstoffe“

(im Folgenden kurz Kommission

genannt) hat unter anderem

diskutiert, ob die bestehenden Sicherheitsanforderungen

[BMU 10] dem

Stand von Wissenschaft und Technik

entsprechen. Eine Empfehlung mit

593

DECOMMISSIONING AND WASTE MANAGEMENT

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

DECOMMISSIONING AND WASTE MANAGEMENT 594

direktem Bezug zur Szenarienentwicklung

[KOM 16] lautet:

„Überprüfung der Einteilung in

die Wahrscheinlichkeitsklassen „wahrscheinliche

Entwicklungen“, „weniger

wahrscheinliche Entwicklungen“ und

„unwahrscheinliche Entwicklungen“,

insbesondere ob die Trennung in

„ wahrscheinliche Entwicklungen“ und

„weniger wahrscheinliche Entwicklungen“

gerechtfertigt ist.“

Über die nationalen Empfehlungen

hinaus sind Szenarien und damit

verbundene Wahrscheinlichkeitsbetrachtungen

auch Gegenstand der

internationalen Fachdiskussion. Der

internationale Stand wurde 2015 auf

dem IGSC Scenario Development

Workshop OECD/NEA vorgestellt und

erläutert [NEA 16]. In der Vergangenheit

sind in verschiedenen nationalen

Vorhaben bereits Arbeiten wie z. B.

„Überprüfung und Bewertung des

bereits verfügbaren Instrumentariums

für eine sicherheitliche Bewertung

von Endlagern für HAW“

( ISIBEL) [BUH 08], „Vorläufige

Sicher heitsanalyse für den Standort

Gorleben“ (VSG) [BEU 12] und

„ Methodik und Anwendungsbezug

eines Sicherheits- und Nachweis konzeptes

für ein HAW-Endlager im Tonstein“

(ANSICHT) [LOM 15, LOM 18]

im Zusammenhang mit Szenarienentwicklungen

durchgeführt worden.

Der Fokus in diesen Vorhaben lag

auf der Zusammenstellung von wirtsgesteinsspezifischen

FEP-Katalogen

(Features, Events and Processes) und

einer darauf basierenden transparenten

und nachvollziehbaren Methodik

zur Ableitung von Szenarien. Die

zugrunde liegende Methodik in den

genannten Vorhaben war lediglich auf

die Ableitung wahrscheinlicher und

weniger wahrscheinlicher Szenarien

ausgerichtet. Die unwahrscheinlichen

Entwicklungen wurden bisher nicht

betrachtet.

Das vorliegende Positionspapier

befasst sich im Wesentlichen mit dem

Umgang mit unwahrscheinlichen Entwicklungen.

Darüber hinaus wird

allgemein auf unterschiedliche zu

betrachtende Entwicklungen sowie

deren Einteilung und auf die o. g.

Überprüfungsforderung der Kommission

eingegangen.

Nationale und internationale

Regularien / Empfehlungen

Nationale Anforderungen

und Empfehlungen

Die Sicherheitsanforderungen [BMU

10] sind maßgeblich für die Nachweisführung

der Einhaltung des

vorgegebenen Sicherheitsniveaus zur

Erfüllung der atomrechtlichen Anforderungen

an ein Endlager für wärmeentwickelnde

radioaktive Abfälle in

tiefen geologischen Formationen. In

den Sicherheitsanforderungen wird

eine Reihe von Vorgaben zur Berücksichtigung

und Behandlung unterschiedlich

wahrscheinlicher Entwicklungen

gemacht.

So werden für die wahrscheinlichen

und weniger wahrscheinlichen

Entwicklungen einzuhaltende zusätzliche

effektive Dosisgrenzwerte für

Einzelpersonen der Bevölkerung

festgelegt (Absatz 6.2 und 6.3 in

[BMU 10]). Für unwahrscheinliche

Entwicklungen sowie für Entwicklungen

aufgrund eines unbeabsichtigten

menschlichen Eindringens in ein

Endlager wird auf die Festlegung

von Werten für zumutbare Risiken

oder zumutbare Strahlenexpositionen

verzichtet (Absatz 6.4 und 6.5 in

[BMU 10]).

In Absatz 7.2 in [BMU 10] werden

Forderungen nach einer umfassenden

Identifizierung und Analyse sicherheitsrelevanter

Szenarien und deren

Einordnung in die vorgegebenen

Wahrscheinlichkeitsklassen erhoben.

In nachgeordneten Anforderungen

werden für wahrscheinliche und

weniger wahrscheinliche Entwicklungen

spezifische Nachweise zur

Einhaltung der Dosisgrenzwerte

( Absatz 7.2.2 in [BMU 10]) und zum

Ausschluss der Kritikalität (Absatz

7.2.4 in [BMU 10]) gefordert. Für

wahrscheinliche Entwicklungen sind

spezifische Nachweise zur Integrität

des einschlusswirksamen Gebirgsbereiches

und der geotechnischen

Barrieren über den Nachweiszeitraum

(Absatz 7.2.1 und 7.2.3 in [BMU 10])

zu erbringen. Weiterhin ist ein

Nachweis zur Handhabbarkeit der

Abfallbehälter bei einer eventuellen

Bergung in der Nachverschlussphase

aus dem stillgelegten und verschlossenen

Endlager für einen Zeitraum

von 500 Jahren (Absatz 8.6 in

[BMU 10]) zu führen.

Begriffsbestimmungen zu unterschiedlich

wahrscheinlichen

Ent wicklungen [BMU 10]:

„Wahrscheinliche Entwicklungen

sind die für diesen Standort prognostizierten

normalen Entwicklungen

und für vergleichbare

Standorte oder ähnliche geolo gische

Situationen normalerweise beobachtete

Entwicklungen. Dabei ist

für die technischen Komponenten

des Endlagers die als normal prognostizierte

Entwicklung ihrer

Eigenschaften zugrunde zu legen.

Falls eine quantitative Angabe zur

Eintrittswahrscheinlichkeit einer

bestimmten Entwicklung möglich

ist, und ihre Eintritts wahrscheinlichkeit

bezogen auf den Nachweiszeitraum

mindestens 10 % beträgt,

gilt diese als wahr schein liche Entwicklung.“

„Weniger wahrscheinliche Entwicklungen

sind solche, die für diesen

Standort unter ungünstigen geologischen

oder klimatischen Annahmen

eintreten können und die

bei vergleichbaren Standorten oder

vergleichbaren geologischen Situationen

selten aufgetreten sind. Für

die technischen Komponenten des

Endlagers ist dabei eine als normal

prognostizierte Entwicklung ihrer

Eigenschaften bei Eintreten der

jeweiligen geologischen Entwicklung

zugrunde zu legen. Außerdem sind

auch von der normalen Entwicklung

ab weichende ungünstige Entwicklungen

der Eigenschaften der technischen

Komponenten zu untersuchen.

Rückwirkungen auf das

geologische Umfeld sind zu

betrachten. Abgesehen von diesen

Rückwirkungen sind dabei die

jeweilig erwarteten geologischen

Entwicklungen zu berücksich tigen.

Innerhalb einer derartigen Entwicklung

ist das gleichzeitige

Auftreten mehrerer unabhängiger

Fehler nicht zu unterstellen. Falls

eine quantitative Angabe zur

Wahrscheinlichkeit einer bestimmten

Entwicklung oder einer ungünstigen

Entwicklung der Eigenschaften

einer technischen Komponente

möglich ist, sind diese hier

zu betrachten, wenn diese Wahrscheinlichkeit

bezogen auf den

Nachweiszeitraum mindestens 1 %

beträgt.“

„Unwahrscheinliche Entwicklungen

sind Entwicklungen, deren Eintreten

am Standort selbst unter ungünstigen

Annahmen nicht erwartet

wird und die bei ver gleichbaren

Standorten oder vergleichbaren

geologischen Situationen nicht

beobachtet wurden. Zustände und

Entwicklungen für technische

Komponenten, die durch zu

treffende Maßnahmen praktisch

ausgeschlossen werden können

sowie das gleichzeitige unabhängige

Versagen von meh reren Komponenten

werden den unwahrscheinlichen

Entwicklungen zugeordnet.“

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Dem Begriff Entwicklung kommen

in den Sicherheitsanforderungen /

BMU 10/ verschiedene Bedeutungen

zu:

1. Beschreibung von Prozessen an

einem bestimmten Ort über einen

bestimmten Zeitraum.

2. Szenarium, das Wechselwirkungen

von verschiedenen Prozessen beschreibt.

Die jeweilige Wortbedeutung erschließt

sich aus dem Sinnzusammenhang.

Hier sollte dennoch aus der

Sicht des AKS zur Vermeidung

von Missverständnissen eine klarere

sprachliche Abgrenzung der genannten

verschiedenen Bedeutungen im

Zuge einer Aktualisierung der Sicherheitsanforderungen

vorgenommen

werden.

Darüber hinaus hat sich die Entsorgungskommission

(ESK) mit der

Thematik „Einordnung von Entwicklungen

in Wahrscheinlichkeits klassen“

und dem „unbeabsichtigten menschlichen

Eindringen in ein Endlager“

auseinandergesetzt und entsprechende

Empfehlungen bzw. Leitlinien verfasst

[ESK 12a, ESK 12b].

Internationale Regelungen /

Empfehlungen

Auch internationale Regelungen bzw.

Empfehlungen differenzieren hinsichtlich

Eintrittswahrscheinlichkeiten.

So geben die von der Western

European Nuclear Regulators Association

(WENRA) ausgegebenen Safety

Reference Level (SRL) die Durchführung

einer Szenarienentwicklung

bzw. -analyse vor, die mögliche FEP

inklusive derjenigen Ereignisse mit

einer geringen Wahrscheinlichkeit zu

berücksichtigen hat, die die Sicherheit

eines Endlagersystems gefährden

[WEN 14].

Den von der WENRA erarbeiteten

SRL liegen die Empfehlungen der

International Atomic Energy Agency

(IAEA) [IAEA 11] und [IAEA 12] zugrunde.

Herauszustellen ist allerdings

noch die folgende Empfehlung der

IAEA in Bezug auf den Vergleich von

kalkulierten Werten mit vorgegebenen

Grenzwerten oder Risiken, die u.

a. bei sehr seltenen Ereignissen mit

Vorsicht zu behandeln sind ([IAEA

11]):

“The robustness of the disposal

system can be demonstrated, however,

by making an assessment of reference

events that are typical of very low

frequency natural events.”

Die o. g. Aussagen werden in

gleicher Weise durch die Ergebnisse

des internationalen Workshops der

OECD/NEA zur Szenarienentwicklung

gestützt [NEA 16]. Aus den Ergebnissen

bzw. Vergleichen wird deutlich,

dass nahezu alle Nationen eine Klassifizierung

der zu untersuchenden

Szenarien vornehmen. Darüber hinaus

berücksichtigen die Nationen,

bis auf sehr wenige Ausnahmen, unwahrscheinliche

Entwicklungen. Bei

den Ausnahmen handelt es sich um

Nationen, die in den entsprechenden

Regularien Schwellwerte für Wahrscheinlichkeiten

(probability cut-offs)

vorgeben, unter denen z. B. sehr unwahrscheinliche

FEP und Szenarien

nicht weiter zu berücksichtigen sind.

So brauchen exemplarisch, gemäß der

Regularien in der Tschechischen Republik,

Szenarien mit einer Wahrscheinlichkeit

von 10 -7 pro Jahr nicht

weiter betrachtet werden [NEA 16].

Unwahrscheinliche Szenarien

und Einteilung

von Entwicklungen

In der Realität wird ein Endlagersystem

nur eine Entwicklung durchlaufen,

die aufgrund von Prognoseunsicherheiten

nicht exakt bestimmt

werden kann. Aus diesem Grund hat

die Szenarienentwicklung alle für das

Endlagersystem sicherheitstechnisch

relevanten potenziellen FEP zu erfassen.

Die so erfassten FEP haben unterschiedliche

Eintrittswahrscheinlichkeiten,

die in den Szenarien berücksichtigt

werden müssen.

Von den meisten Nationen, die sich

mit der Endlagerung von radioaktiven

Abfällen auseinandersetzen, werden

unterschiedliche Szenarien in den

Sicherheitsanalysen zugrunde gelegt.

Ausgehend von einer wahrscheinlichen

Entwicklung des Endlagersystems

werden davon abweichende

Szenarien identifiziert. Die Nomenklatur

der unterschiedlichen Wahrscheinlichkeitsklassen

variiert dabei

(vgl. Tabelle 3 in [NEA 16]). Wahrscheinliche

Szenarien werden z. B.

als Normalentwicklung, Referenzszenarium,

erwartete Entwicklung,

Nominalszenarium und Hauptszenarium

bezeichnet. Davon abweichende

Szenarien erhalten z. B. die Bezeichnung

alternative Szenarien, weniger

wahrscheinliche Szenarien, zusätzliche

Szenarien und Nebenszenarien.

Szenarien, die gemäß [NEA 16] z. B.

zur Untersuchung oder Demonstration

der Systemrobustheit herangezogen

werden, werden als What-If

Szenarien oder What-If Fälle, sehr

unwahrscheinliche Szenarien oder

übrige Szenarien bezeichnet.

Die in deutschen Vorhaben [BUH

08, BEU 12] und [LOM 15, LOM 18]

entwickelte Methode sieht die

Entwicklung eines Referenzszenariums

und davon abweichender alternativer

Szenarien, die wahrscheinlich

oder weniger wahrscheinlich sein

können, vor. Sowohl die Ableitung des

Referenzszenariums als auch der

Alternativszenarien erfolgt unter Zugrundelegung

einer systematischen

Vorgehensweise, die die Berücksichtigung

von spezifischen Ansatzpunkten

vorgibt. Die Übertragung

dieser Methode zur Ableitung von

unwahrscheinlichen Szenarien ist

nur eingeschränkt möglich. Der AKS

empfiehlt, unwahrscheinliche Szenarien

getrennt von einer systematischen

Entwicklung wahrscheinlicher

und weniger wahrscheinlicher

Szenarien zu behandeln (s. u.).

Die Sicherheitsanforderungen sind

aus Sicht des AKS bezüglich des

Begriffes unwahrscheinliche Szenarien

und deren geforderter Behandlung

mehrdeutig. Im Folgenden wird

auf zu klärende Fragen im Zusammenhang

mit den Anforderungen zur

Behandlung von unwahrscheinlichen

Szenarien näher eingegangen. Die

wesentlichen Ergebnisse des AKS zur

jeweiligen Fragestellung sind im

weiteren Verlauf unterhalb der zu

klärenden Fragen eingefügt.

Ableitung von unwahrscheinlichen

Entwicklungen

Unter Berücksichtigung der o. g. Begriffsbestimmung

zu unwahrscheinlichen

Entwicklungen aus [BMU 10]

lässt sich eine Charakterisierung

von Entwicklungen (unwahrscheinlich

und nicht unwahrscheinlich)

gemäß der Abbildung 1 vornehmen.

Um eine Einordnung nach diesem

Schema vornehmen zu können,

müssen eine Reihe von Fragen geklärt

werden. Zunächst erfolgt eine Fokussierung

auf die (a) Begrifflichkeiten

im Entscheidungsablauf (Abbildung

1). Anschließend wird auf die (b) Verknüpfungen

der Entscheidungsfelder

eingegangen. Darüber hinaus wird

eine zusätzliche Option für die

Ableitung von unwahrscheinlichen

Szenarien vorgeschlagen.

a) Begrifflichkeiten

im Entscheidungsablauf:

• Was heißt: „vergleichbarer

Standort“ bzw. „vergleichbare

geolo gische Situation“ (Entscheidungsfeld

1.3)?

Vergleichbare Standorte sind

solche, die eine ähnliche Ent wicklungsgeschichte

durchlaufen haben

und dadurch eine ähnliche geologische

Situation aufweisen. Eine

Ver gleichbarkeit ist auch gegeben,

DECOMMISSIONING AND WASTE MANAGEMENT 595

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

DECOMMISSIONING AND WASTE MANAGEMENT 596

| | Abbildung 1

Darstellung eines qualitativen Entscheidungsablaufes zur Ableitung von unwahrscheinlichen Entwicklungen unter Berücksichtigung der Begriffsbestimmung

gemäß [BMU 10] (Entscheidungsfelder sind durch nummerierte Symbole von 1.1 bis 1.5 gekennzeichnet).

wenn Hinweise für die Möglichkeit

des Auftretens ähnlicher Entwicklungen

in der Zukunft vorliegen.

• Welcher Zeitraum in der Vergangenheit

ist für das Auftreten

von Prozessen am Vergleichsstandort

zu betrachten (Entscheidungsfeld

1.3)?

Die Wahl des zu betrachtenden

Zeitraums ist in Abhängigkeit vom

jeweiligen betrachteten Prozess zu

treffen. Beispiele hierfür sind die

Prozesse Halokinese und Inlandvereisung.

Für den Prozess der

Halokinese ist der Zeitraum von

der Ablagerung der betrachteten

Salzformation bis zur Gegenwart

(ca. 250 Mio. Jahre für Salzformationen

des Zechsteins) zu betrachten,

während für den Prozess

der Inlandvereisung das Quartär

(ca. 2 Mio. Jahre) zu betrachten

ist.

• Was heißt: Die Entwicklung

kann durch Maßnahmen praktisch

ausgeschlossen werden

(Entscheidungsfeld 1.4)?

Praktisch ausgeschlossen bedeutet,

dass trotz getroffener Maßnahmen

immer noch eine Restwahrscheinlichkeit

bestehen kann,

dass die betrachtete Entwicklung

eintritt. Es bedeutet nicht notwendiger

Weise: vollständig ausschließbar.

• Was ist unter einer Komponente

zu verstehen (Entscheidungsfeld

1.1)?

Eine Komponente ist ein Bestandteil

des Endlagersystems, sie kann

natürlichen oder technischen Ursprungs

sein.

• Was bedeutet: gleichzeitiges

unabhängiges Versagen von

mehreren Komponenten (Entscheidungsfeld

1.5)?

Innerhalb einer kurzen Zeitspanne

erfüllen mehrere Komponenten

aufgrund voneinander unabhängiger

Ursachen ihre Sicherheitsfunktion

nicht mehr.

b) Verknüpfung

In Abbildung 1 werden Verknüpfungen

zwischen Entscheidungsfeldern

dargestellt. Diese Verknüpfungen stellen

keine kausalen Zusammenhänge

dar, sondern Entscheidungswege. Die

Definition zu unwahrscheinlichen

Entwicklungen [BMU 10] lässt aus

der Sicht des AKS hinsichtlich der

technischen Komponenten mehrere

Interpretationen zu, die zu unterschiedlichen

Entscheidungsabläufen

führen können. Der dargestellte Entscheidungsbaum

in Abbildung 1 ist

eine Interpretationsmöglichkeit. Der

AKS empfiehlt, die Definition in

den Sicherheitsanforderungen entsprechend

zu konkretisieren.

Aus den Verknüpfungen ergibt

sich, dass geologische Prozesse, die

nicht am Standort selbst und an vergleichbaren

Standorten oder geologischen

Situationen erwartet werden,

als unwahrscheinliche Prozesse zu

behandeln sind (linker Strang in

Abbildung 1). Nach Auffassung des

AKS ist eine umfassende Identifizierung

derartiger Prozesse nicht

möglich.

Hinsichtlich der technischen Komponenten

(rechter Strang in Abbildung

1) sind die beiden Kriterien

nach zu treffenden Maßnahmen und

nach Unterstellung eines gleichzeitigen

unabhängigen Versagens von

mehreren Komponenten zur Einordnung

von unwahrscheinlichen

Entwicklungen vorgesehen. Aus der

Sicht des AKS sind diese Kriterien ausreichend.

Zusammenfassend ergeben sich

gemäß der Abbildung 1 die folgenden

Aspekte, die für die Ableitung von

unwahrscheinlichen Entwicklungen

essenziell sind:

• Unwahrscheinliche Prozesse

• Kombination des unabhängigen

Versagens mehrerer technischer

Komponenten

Darüber hinaus schlägt der AKS vor,

dass die unwahrscheinlichen Entwicklungen

auch dadurch abgeleitet

werden können, dass für FEP mit

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

einem wahrscheinlichen oder weniger

wahrscheinlichen Eintreten eine unwahrscheinliche

Ausprägung unterstellt

wird.

Allgemein ist es für die Entwicklung

von Szenarien essenziell, die

einwirkenden FEP hinsichtlich ihres

Eintretens und ihrer Ausprägung

zu charakterisieren. So ergibt sich

bei einer Vorgehensweise gemäß

[BUH 08, BEU 12 und LOM 15,

LOM 18] das Referenzszenarium aus

der Berücksichtigung der wahrscheinlichen

FEP, die die Sicherheitsfunktionen

des Endlagersystems

direkt beeinträch tigen und die

Mobilisierung bzw. den Transport

von Radionukliden aus den Abfällen

bestimmen. Für diese FEP wird im

Referenzszenarium die wahrscheinliche

Ausprägung zugrunde gelegt.

Zur Ableitung von unwahrscheinlichen

Entwicklungen könnten z. B.

die o. g. wahrscheinlichen FEP mit

direkter Beeinträchtigung von Initial-

Barrieren und der Mobili sierung bzw.

dem Transport von Radionukliden aus

dem Referenz szenarium herangezogen

werden. Für diese FEP sind

dann potenzielle unwahrscheinliche

Ausprägungen zugrunde zu legen.

Analog könnten aus der Methodik

zur Ableitung von Alternativszenarien

unwahrscheinliche Entwicklungen

abgeleitet werden.

Nach dem Klassifizierungsschema

zur Einordnung von Entwicklungen in

Wahrscheinlichkeitsklassen [ESK 12a,

BEU 13] ist das FEP mit der geringsten

Wahrscheinlichkeit bestimmend (soweit

die FEP voneinander unabhängig

sind). Das bedeutet, es wird das Referenzszenarium

herangezogen und

für die entsprechenden FEP wird

die unwahrscheinliche Ausprägung

betrachtet. Insgesamt ist dieses

Szenarium dann als unwahrscheinlich

zu charakterisieren. Die Bewertung

der Konsequenzen kann ebenfalls zur

Darstellung der Robustheit des Endlagersystems

dienen. Werden die

als unwahrscheinlich eingestuften

Szenarien mit Modellierung oder

Berechnung dargestellt, bietet sich

zudem die Möglichkeit eines direkten

Vergleiches mit dem zu Grunde

gelegten Referenzszenarium.

Umgang mit unwahrscheinlichen

Szenarien

Neben der Charakterisierung von

unwahrscheinlichen Entwicklungen

beinhalten die Sicherheitsanforderungen

Vorgaben, wie mit resultierenden

Szenarien im Sicherheitsnachweis

weiter zu verfahren ist (Absatz

6.4 in [BMU 10]).

| | Abbildung 2

Grafische Darstellung der Sicherheitsanforderung zum Umgang mit unwahrscheinlichen Szenarien gemäß

/BMU 10/ (Entscheidungsfelder sind durch nummerierte Symbole von 2.1 bis 2.3 gekennzeichnet).

| | Abbildung 3

Einteilung der unterschiedlichen Szenarien nach Wahrscheinlichkeiten bzw. Charakterisierungsmerkmalen.

Die Abbildung 2 zeigt eine

gra fische Interpretation der Sicherheitsanforderung

zum Umgang mit

unwahrscheinlichen Szenarien.

Auf die normative Fragestellung

zu hohen Strahlenexpositionen

( Entscheidungsfeld 2.1) wird nicht

ein gegangen. Aus der Sicht des

AKS sind die folgenden Fragen zu

klären:

• Was ist ein vertretbarer Aufwand

(Entscheidungsfeld 2.2)?

Es existieren keine Kriterien oder

Richtgrößen zur Beurteilung des

DECOMMISSIONING AND WASTE MANAGEMENT 597

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

DECOMMISSIONING AND WASTE MANAGEMENT 598

Klimaänderung

(aus [PAC 15] entnommen)

vertretbaren Aufwands. Dieser erscheint

aus der Sicht des AKS dann

gegeben, wenn hierdurch die möglichen

Auswirkungen auf Mensch

und Umwelt merklich abgeschwächt

würden und die Umsetzung

der damit verbundenen

Maßnahmen technisch machbar

und finanzierbar ist. Mögliche Auswirkungen

auf Mensch und Umwelt

bei Eintreten anderer (wahrscheinlicherer)

Szenarien dürfen

durch die Maßnahmen nicht

erhöht werden. Risiken in der

Betriebsphase dürfen gleichfalls

nicht erhöht werden.

• Welche anderen Entwicklungen

sind gemeint (Entscheidungsfeld

2.3)?

Mit der Formulierung wird auf die

Möglichkeit hingewiesen, dass

durch vorgesehene Maßnahmen

eine Optimierung hinsichtlich anderer

Entwicklungen behindert

wird. Diese anderen Entwicklungen

können dabei wahrscheinlich,

weniger wahrscheinlich oder auch

unwahrscheinlich sein.

Abgrenzung

Der AKS hält es für zwingend notwendig,

eine Unterscheidung zwischen

unwahrscheinlichen Entwicklungen

mit einer Restwahrscheinlichkeit und

ausgeschlossenen Entwicklungen

(siehe Abbildung 3) vorzunehmen.

Planungsrechnung

(aus [ZIM 68] entnommen)

Eine quantitative Vorgabe von Kriterien

hält der AKS für nicht praktikabel.

Stattdessen schlägt der AKS

vor, methodisch über folgende

Optionen unwahrscheinliche Entwicklungen

mit einer Restwahrscheinlichkeit

abzuleiten unter der

Voraussetzung, dass diese nicht

bereits im Rahmen des Standortauswahlverfahrens

im Zusammenhang

mit den Ausschlusskriterien ausgeschlossen

wurden:

• Unwahrscheinliche Ereignisse und

Prozesse, die im Rahmen der

Einteilung in Wahrscheinlichkeitsklassen

identifiziert wurden.

• Unwahrscheinliche Ausprägung

von Ereignissen und Prozessen,

die auf die Barrieren des Endlagersystems

wirken.

• Gleichzeitiges Versagen mehrerer

technischer Komponenten aufgrund

voneinander unabhängiger

Ursachen.

Optimierung

Insgesamt vertritt der AKS die Auffassung,

dass die Optimierung des

Endlagersystems eine wesentliche

übergeordnete Zielsetzung ist und zur

steten Aufgabe während der Entwicklungsphasen

eines Endlagers gehört.

Gemäß den Sicherheitsanforderungen

wird jedoch u. U. eine Optimierung

des Endlagersystems gegen

Prozesse verfolgt, die selbst unter

Endlager

(aus [ROS 89] entnommen)

virtually certain, 99–100 % Ereignis ist völlig sicher (100 %) Very likely or certain (p = 1)

extremely likely, 95–100 %

very likely, 90–100 %

likely, 66–100 %

more likely than not,

>50–100 %

Ereignis ist außerordentlich

wahrscheinlich (90 – 99 %)

Ereignis ist sehr wahrscheinlich

(80 – 95 %)

Ereignis ist recht wahrscheinlich

(70 – 90 %)

Ereignis ist wahrscheinlich

(60 – 80 %)

Less than certain,

but reasonably likely (10 -1 )

Not likely, but cannot be ruled

out (10 -2 )

Probably will not occur (10 -3 )

Very unlikely, based on reliable

data (10 -4 )

about as likely as not, 33–66 % Ereignis ist sehr möglich (50 – 70 %) Extremly unlikely (10 -5 )

unlikely, 0–33 %

very unlikely, 0–10 %

extremely unlikely, 0–5 %

exceptionally unlikely, 0–1 %

Ereignis ist durchaus möglich

(40 – 60 %)

Ereignis ist immerhin möglich

(30 – 50 %)

Ereignis ist unwahrscheinlich

(20 – 40 %)

Ereignis ist recht unwahrscheinlich

(10 – 30 %)

Ereignis ist sehr unwahrscheinlich

(5 – 20 %)

Ereignis ist außerordentlich

unwahrscheinlich (1 – 10 %)

Ereignis ist völlig unmöglich (0 %)

Physically possible, but almost

certain not to occur (10 -6 )

Assumed to be physically

impossible, based on the currently

available data (0)

| | Tabelle 1

Gegenüberstellung von Beispielen zur Zuordnung von quantitativen zu qualitativen Wahrscheinlichkeitsangaben

ungünstigen Annahmen nicht am

Standort über den Nachweiszeitraum

zu erwarten sind. Daher sollten diejenigen

Prozesse, die auf Naturereignissen

basieren und durch Auswahlkriterien

am entsprechenden

Standort ausgeschlossen wurden,

nicht weiter behandelt werden. Aus

der Sicht des AKS sollten die Sicherheitsanforderungen

in Bezug auf die

Optimierung des Endlagersystems im

Zusammenhang mit unwahrscheinlichen

Prozessen und Szenarien mit

Restwahrscheinlichkeiten konkretisiert

werden.

Hier sollte generell die Forderung

erhoben werden, dass sich durch Optimierungsmaßnahmen

zum Schutz

vor den Auswirkungen unwahrscheinlicher

Entwicklungen keine Beeinträchtigungen

hinsichtlich der wahrscheinlichen

oder weniger wahrscheinlichen

Entwicklungen ergeben

dürfen.

Über den Optimierungsgedanken

hinaus erscheint es nach Ansicht des

AKS zu Anschauungszwecken praktikabel,

eine begrenzte Auswahl von

unwahrscheinlichen und/oder What-

If Fällen zusammenzustellen und die

Robustheit des Endlagersystems und

einzelner Komponenten zu testen und

darzustellen. Der AKS ist jedoch nicht

der Auffassung, dass hierzu regulatorische

Vorgaben erforderlich sind.

Einteilung von Entwicklungen

Unter Berücksichtigung der gemachten

Ausführungen, des Positionspapiers

zum menschlichen Ein dringen

(HI-Szenarien) [AKS 08] und der

Sicherheitsanforderungen [BMU 10]

ergibt sich aus Sicht des AKS für die

Einteilung der Szenarien das in

Abbildung 3 dargestellte Schema.

Der AKS stützt die Festlegungen

in den Sicherheitsanforderungen

[BMU 10], für unwahrscheinliche

Szenarien und Szenarien aufgrund

eines unbeabsichtigten menschlichen

Eindringens in ein Endlager auf

Grenzwerte für zumutbare Risiken

oder zumutbare Strahlenexpositionen

zu verzichten.

Mit Bezug auf die eingangs erwähnte

Fragestellung der Kommission

zur Einteilung von Entwicklungen

in Wahrscheinlichkeitsklassen

ist festzustellen, dass eine solche

Einteilung auch in anderen Fachbzw.

Wissensbereichen vorge nommen

wird.

Die Tabelle 1 beinhaltet Beispiele

von Zuordnungen von qualitativen

zu quantitativen Wahrscheinlichkeitsangaben.

Auffällig ist hierbei, dass

im Vergleich zu den genannten

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Entwicklungen in den Sicher heitsanforde

rungen deutlich mehr als drei

Klassen vorkommen und sowohl die

qualita tive Beschreibung als auch

Wert zuweisung erheblich abweicht.

Die Einordnung in Wahrscheinlichkeitsklassen

erscheint insgesamt

subjektiv geprägt unter Berücksichtigung

der jeweiligen zu beurteilenden

Problem- bzw. Aufgabenstellung.

Aus dem dargelegten Sachverhalt

kommt der AKS zu dem Schluss, dass

die Einteilung von Entwicklungen in

Wahrscheinlichkeitsklassen eine übliche

Vorgehensweise ist und dass eine

solche Klassifizierung im Rahmen des

Langzeitsicherheitsnachweises einen

wesentlichen Aspekt für die Zusammenstellung

von Argumenten darstellt

sowie für die allgemeine Diskussion

ein hilfreiches Unterscheidungsmerkmal

sein kann. Diese Aussage bezieht

sich auch auf die Unterscheidung von

wahrscheinlichen und weniger wahrscheinlichen

Entwicklungen. Insgesamt

ist die Einteilung in drei Klassen

durchführbar. Um eine weitere Differenzierung

in Klassen vorzunehmen,

sind verlässliche Daten notwendig, die

oftmals nicht vor liegen. Darüber hinaus

ist aus der Sicht des AKS für die

Diskussion von Eintrittswahrscheinlichkeiten

eine Vielzahl von Klassen

nicht praktikabel.

Fazit

Die Betrachtung von möglichen Entwicklungen,

die ein Endlagersystem

zukünftig durchlaufen kann, ist ein

wesentlicher Bestandteil im Rahmen

eines Sicherheitsnachweises. Als Voraussetzung

für eine solche Betrachtung

ist es essenziell, den regulatorischen

Rahmen vorzugeben. Insgesamt

stellen die Sicherheitsanforderungen

/BMU 10/ eine solide Grundlage

für die Ableitung von Entwicklungen

und den Umgang mit ihnen

dar. Die Unterteilung der darin geforderten

verschiedenen zu betrachtenden

Entwicklungen ist nicht nur üblich,

sondern kommt einer strukturierten

Vorgehensweise in der weiteren

Beurteilung entgegen. Der AKS

empfiehlt, unwahrscheinliche Szenarien

getrennt von einer systematischen

Entwicklung wahrscheinlicher

und weniger wahrscheinlicher

Szenarien zu behandeln, und hat

einen Vorschlag zur Ableitung von

unwahrscheinlichen Entwicklungen

erarbeitet. Dieser Vorschlag enthält

KONTEC 2019

vom 27. - 29. März 2019 in Dresden

neben den beiden durch die Sicherheitsanforderungen

vorgezeichneten

Vorgehensweisen einen ergänzenden

Ansatz.

Der AKS schlägt vor, unwahrscheinliche

Entwicklungen anhand

ihrer Eintrittswahrscheinlichkeit in

residuale und auszuschließende Entwicklungen

einzuteilen.

Im Folgenden wird in allgemeiner

Form skizziert, welche inhaltlichen

Merkmale von Anforderungen hinsichtlich

Beschreibung, Ableitung,

Umgang und Abgrenzung der zu betrachtenden

Entwicklungen und insbesondere

unwahrscheinlicher Entwicklungen

aus der Sicht des AKS als

wesentlich erachtet werden. Der AKS

ist sich dessen bewusst, dass die o. g.

inhaltlichen Merkmale sich vermutlich

nicht in allen Punkten in dem erforderlichen

Detaillierungsgrad ausgestalten

lassen:

• Die Begriffsbestimmungen zu

unterschiedlichen Entwicklungen

sind klar, unmissverständlich und

eindeutig zu formulieren.

• Der Interpretationsspielraum bei

der Deutung von Begrifflichkeiten

ist dabei soweit wie möglich zu

reduzieren.

Advertisement

DECOMMISSIONING AND WASTE MANAGEMENT 599

14. Internationales Symposium „Konditionierung radioaktiver Betriebs- und Stilllegungsabfälle“

einschließlich 14. Statusbericht des BMBF „Stilllegung und Rückbau kerntechnischer Anlagen“

Begleitende Fachausstellung + + + wissenschaftlich-technisches Programm in

3 Sektionen +++ 43 Plenarvorträge +++ 16 KONTEC DIREKT Kurzvorträge +++

60 Postervorträge +++ Special: Forschung trifft Industrie

Frühbuchertarif

www.kontec-symposium.de

bis 11. Januar 2019

KONTEC

Gesellschaft für technische Kommunikation mbH

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

DECOMMISSIONING AND WASTE MANAGEMENT 600

• Der Einfluss durch subjektive

Beurteilung bzw. Auslegung von

Anforderungen sollte durch entsprechende

Vorgaben so gering

wie möglich gehalten werden.

• Der Umgang mit den Entwicklungen

muss praktikabel sein.

• Die Abgrenzung der Entwick lungen

untereinander muss eindeutig sein.

Die Übergänge zwischen den einzelnen

Entwicklungen sollten nach

Möglichkeit keine bzw. nur geringe

Überlappungsbereiche aufweisen.

• Insbesondere eine Argumentation

zur Identifizierung auszuschließen

der Entwicklungen aus

der Gruppe der unwahrscheinlichen

Entwicklungen unter

Berücksichtigung des Nachweiszeitraumes

ist vorzusehen.

Referenzen

[AKS 08]

[BEU 12]

[BEU 13]

[BMU 10]

[BUH 08]

Arbeitskreis “Szenarienentwicklung”

(AKS): Position des Arbeitskreises

„Szenarienentwicklung“,

Behandlung des menschlichen Eindringens

in ein Endlager für radioaktive

Abfälle in tiefen geologischen

Formationen. atw – Internationale

Zeitschrift für Kernenergie,

Bd. 53, Heft 8/9 August/

September, 2008.

Beuth, T., Bracke, G., Buhmann, D.,

Dresbach, C., Keller, S., Krone, J.,

Lommerzheim, A., Mönig, J.,

Mrugalla, S., Rübel, A., Wolf, J.:

Szenarienentwicklung, Methodik

und Anwendung, Bericht zum

Arbeitspaket 8, Vorläufige Sicherheitsanalyse

für den Standort

Gorleben. Bundesanstalt für

Geowissenschaften und Rohstoffe

(BGR), DBE TECHNOLOGY GmbH

(DBETEC), Gesellschaft für

Anlagen- und Reaktorsicherheit

(GRS) mbH, GRS-284, 239 S., ISBN

978-3-939355-60-1, Gesellschaft

für Anlagen- und Reaktorsicherheit

(GRS) mbH: Köln, 2012.

Beuth, T.: Vorschlag zur Einordnung

von Szenarien für tiefe geologische

Endlager in Wahrscheinlichkeitsklassen.

GRS-296, 39 S.,

ISBN 978-3-939355-75-5, Gesellschaft

für Anlagen- und Reaktorsicherheit

(GRS) mbH: Köln, 2013.

Bundesministerium für Umwelt,

Naturschutz und Reaktorsicherheit

(BMU): Sicherheitsanforderungen

an die Endlagerung

wärmeentwickelnder radioaktiver

Abfälle. 22 S.: Bonn,

30. September 2010.

Buhmann, D., Mönig, J., Wolf, J.,

Heusermann, S., Keller, S., Weber,

J. R., Bollingerfehr, W., Filbert, W.,

Kreienmeyer, M., Krone, J., Tholen,

M.: Zusammenfassender Abschlussbericht,

Überprüfung und

Bewertung des Instrumentariums

für eine sicherheitliche Bewertung

von Endlagern für HAW (Projekt

ISIBEL). Gesellschaft für

Anlagen- und Reaktorsicherheit

(GRS) mbH, DBE TECHNOLOGY

GmbH (DBETEC), Bundesanstalt

für Geo wissenschaften und Rohstoffe

(BGR), TEC-09-2008-AB:

Braunschweig, April 2008.

[ESK 12a] Entsorgungskommission (ESK):

Empfehlung der Entsorgungskommission;

Leitlinie zur Einordnung

von Entwicklungen in Wahrscheinlichkeitsklassen;

Revidierte

Fassung vom 13.11.2012 nach

Verabschiedung durch die ESK

im Umlaufverfahren (diese

Fassung ersetzt die Fassung vom

21.06.2012). Bonn, 13. November

2012.

[ESK 12b] Entsorgungskommission (ESK):

Empfehlung der Entsorgungskommission;

Leitlinie zum menschlichen

Eindringen in ein Endlager

für radioaktive Abfälle; Fassung

vom 26.04.2012. Bonn, 26. April

2012.

[IAEA 11]

[IAEA 12]

International Atomic Energy

Agency (IAEA): Disposal of Radioactive

Waste. IAEA Specific Safety

Requirements, SSR-5, 62 S., ISBN

978-92-0-103010-8: Vienna, 2011.

International Atomic Energy

Agency (IAEA): The Safety Case

and Safety Assessment for the

Disposal of Radioactive Waste.

IAEA Safety Standards Series,

Specific Safety Guide SSG-23, ISBN

978-92-0-128310-8: Vienna, 2012.

[KOM 16] Kommission Lagerung hoch radioaktiver

Abfallstoffe: Abschlussbericht

der Kommission Lagerung

hoch radioaktiver Abfallstoffe.

K-Drs. 268, 683 S.: Berlin,

30. August 2016.

[LOM 15]

[LOM 18]

[NEA 16]

[PAC 15]

Lommerzheim, A., Bebiolka, A.,

Jahn, S., Jobmann, M., Meleshyn,

A., Mrugalla, S., Rheinhold, K.,

Rübel, A., Stark, L.: Szenarienentwicklung

für das Endlagerstandortmodell

NORD, Methodik und

Anwendung, Projekt ANSICHT. DBE

TECHNOLOGY GmbH (DBETEC),

Technischer Bericht, TEC-17-2014-

AP, 92 S.: Peine, 30. Juni 2015.

Lommerzheim, A., Jobmann, M.,

Meleshyn, A., Mrugalla, S., Rübel,

A., Stark, L.: Safety Concept, FEP

Catalogue, and Scenario Development

as Fundamentals of Longterm

Safety Demonstration for

High-Level Waste Repositories in

German Clay Formations. In: Norris,

S., Neeft, E.A.C., van Geet, M. (E.)

(Hrsg.): Multiple Roles of Clays in

Radioactive Waste Confinement.

SP482, S. SP482.6, DOI 10.1144/

SP482.6, Geological Society,

London, Special Publications,

2018.

Organization for Economic

Co-operation and Development –

Nuclear Energy Agency (OECD-

NEA): Scenario Development

Workshop Synopsis, Integration

Group for the Safety Case. NEA/

RWM/R(2015)3, 2016.

Pachauri, R. K., Meyer, L. (Hrsg.):

Climate change 2014, Synthesis

report, Contribution of Working

Groups I, II and III to the Fifth

[ROS 89]

[STA 13]

Assessment Report of the Intergovernmental

Panel on Climate

Change. Intergovernmental Panel

on Climate Change (IPCC), 151 S.,

ISBN 978-92-9169-143-2: Geneva,

Switzerland, 2015.

Ross, B.: Scenarios for repository

safety analysis. Engineering

Geology, Bd. 26, Nr. 4, S. 285–299,

DOI 10.1016/0013-

7952(89)90018-5, 1989.

Gesetz zur Suche und Auswahl

eines Standortes für ein Endlager

für Wärme entwickelnde radioaktive

Abfälle (Standortauswahlgesetz

– StandAG) in der Fassung

vom 23. Juli 2013 (BGBl. I 2013,

Nr. 41, S. 2553).

[WEN 14] Working Group on Waste and

Decommissioning (WGWD)

(Hrsg.): Radioactive Waste Disposal

Facilities Safety Reference Levels.

Western European Nuclear

Regulators Association (WENRA),

22. Dezember 2014.

[ZIM 68]

Authors

Zimmermann, W.: Planungsrechnung,

Optimierungsrechnungen,

Wirtschaftlichkeitsrechnungen,

Netzplantechnik. Das moderne

Industrieunternehmen, Betriebswirtschaft

für Ingenieure, ISBN

9783663009252, Vieweg+-

Teubner Verlag: Wiesbaden, 1968.

Bundesgesellschaft für

Endlagerung mbH (BGE):

Orzechowski, J.; Stolzenberg, G.;

Wollrath, J.

BGE TECHNOLOGY GmbH

(BGE TEC):

Lommerzheim, A.

Bundesanstalt für Geowissenschaften

und Rohstoffe (BGR):

Mrugalla, S.

Gesellschaft für Anlagen- und

Reaktorsicherheit (GRS) gGmbH:

Beuth, T.; Bracke, G.; Mayer, K.-M.;

Mönig, J.; Rübel, A.; Wolf, J.

Karlsruher Institut für Technologie,

Institut für Nukleare Entsorgung

(KIT-INE):

Metz, V.

Technische Universität Clausthal,

Institut für Endlagerforschung

(TUC-IELF):

Chaudry, S.; Plischke, E.; Röhlig, K.-J.

Anschrift des Verfassers:

Arbeitskreis

„Szenarienentwicklung“

Kontakt: Gesellschaft für Anlagenund

Reaktorsicherheit (GRS)

gGmbH

Bereich Stilllegung und Entsorgung

Schwertnergasse 1

50667 Köln, Deutschland

Decommissioning and Waste Management

Position paper: Probability Classes and Handling of Improbable Developments ı

T. Beuth, G. Bracke, S. Chaudry, A. Lommerzheim, K.-M. Mayer, V. Metz, J. Mönig, S. Mrugalla, J. Orzechowski, E. Plischke, K.-J. Röhlig, A. Rübel, G. Stolzenberg, J. Wolf and J. Wollrath


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Der Rückbau kerntechnischer Anlagen:

Eine interdisziplinäre Aufgabe

für Nachwuchskräfte

David Anton, Manuel Reichardt, Thomas Hassel und Harald Budelmann

1 Einleitung Nur wenige Monate nach der Havarie des japanischen Kernkraftwerks Fukushima Daiichi im

März 2011 wurde von der deutschen Bundesregierung der schrittweise Ausstieg aus der kommerziellen Nutzung der

Kernenergie bis spätestens Ende 2022 beschlossen. Anfang des Jahres 2018 befanden sich nach [3] in Deutschland

noch sieben Kernreaktoren im Leistungsbetrieb. Entsprechend [4] wurde bei drei Leistungsreaktoren der Betrieb

eingestellt, während sich 23 Leistungs- bzw. Prototypreaktoren bereits in Stilllegung befinden. Mit dem Inkrafttreten

des „Gesetzes zur Neuordnung der Verantwortung in der kerntechnischen Entsorgung” im Juni 2017 wurde der „Fonds

zur Finan zierung der kerntechnischen Entsorgung“ errichtet. Durch die Bildung des Fonds durch die Betreiber und den

damit verbundenen Übergang der Verantwortlichkeit für die Reststoffe an den Bund ist der Weg für den von den

Betreibern verantworteten Rückbau koordiniert gestaltet.

Beim Rückbau von Kernkraft werken

müssen vielfältige Rand bedingungen

und Anforderungen beachtet werden,

die neben den rechtlichen insbesondere

auch komplexe verfah -

rens- und strahlenschutztechnische

Aspekte berühren. Wesentlich ist in

diesem Zusammenhang auch die Aufgabe

des fachgerechten Umgangs

mit den beim Rückbau anfallenden

Materialien. Mit Schacht Konrad befindet

sich bereits ein planfestgestelltes

Endlager für Abfälle mit vernachlässigbarer

Wärmeentwicklung

in der Errichtung. Jedoch sind Ort

und Zeitpunkt für die Inbetriebnahme

eines Endlagers für hoch radioaktive,

Wärme entwickelnde Abfälle in

Deutschland bis heute noch relativ

ungewiss.

Sowohl für den Rückbau der zahlreichen

Kernkraftwerke als auch

für den fachgerechten Umgang mit

den dabei anfallenden radioaktiven

Abfällen wird Fachpersonal der unterschiedlichsten

Disziplinen benötigt.

Die große Komplexität der Gesamtaufgabe

erfordert darüber hinaus eine

interdisziplinäre Herangehensweise

an die jeweiligen Einzelaspekte.

Im folgenden Artikel wird daher

am Beispiel des Rückbaus von Kernkraftwerken

schlaglichtartig anhand

der vielfältigen Herausforderungen

auf die große Bedeutung des Kompetenzerhalts

hingewiesen. Für die

erfolgreiche Durchführung der zahlreich

anstehenden Rückbauprojekte

ist dies dringend erforderlich – die

Notwendigkeit fachspezifischer Ausbildungswege,

Forschungsarbeiten

und der Weitergabe von Erfahrungen

an junge Nachwuchskräfte bleibt auch

deutlich über das Jahr 2022 hinaus

bestehen. Zudem kann die Kompetenz

im Bereich des Rückbaus auch

zukünftig im internationalen Maßstab

genutzt werden.

Die folgenden Ausführungen

geben die wesentlichen Inhalte einer

Bachelorarbeit mit dem Titel Der

Rückbau von Leichtwasserreaktoren

unter verfahrens- und strahlenschutztechnischen

Gesichtspunkten wieder,

die im Rahmen des Forschungsprojektes

ENTRIA – Entsorgungsoptionen

für radioaktive Reststoffe: Interdisziplinäre

Analysen und Entwicklung von

Bewertungsgrundlagen an der TU

Braunschweig in Kooperation mit der

LU Hannover angefertigt wurde.

2 Herausforderungen und

Randbedingungen

Die Entwicklung eines Rückbaukonzeptes

für eine kerntechnische Anlage

nimmt idealerweise schon mit der

Inbetriebnahme ihren Anfang. Bis

zur Durchführung der einzelnen

Rückbaumaßnahmen durchläuft das

Rückbaukonzept mehrere Iterationsschritte,

in denen der Detailgrad zunehmend

erhöht wird.

Die Ausarbeitung des Konzeptes

für eine Rückbaumaßnahme wird

wesentlich durch die vorliegenden

Randbedingungen beeinflusst, wie

z. B. durch die gewählte Rückbaustrategie,

den Reaktortyp, die räumliche

Struktur, die vorhandene Infrastruktur,

die radiologische Situation

oder weitere strahlenschutztechnische

Aspekte in der kerntechnischen

Anlage. Weitere Randbedingungen

lassen sich [24] entnehmen.

Die einzelnen Randbedingungen

sind nicht isoliert voneinander zu

betrachten, sondern stehen in vielfachen

Wechselwirkungen und sind

dabei häufig individuell vom jeweiligen

Stilllegungsprojekt abhängig.

Die Erstellung eines universell

anwend baren Rückbaukonzeptes ist

daher nicht möglich und muss vielmehr

unter Berücksichtigung der

vorlie genden Gegebenheiten für jede

kerntechnische Anlage individuell

erstellt bzw. angepasst werden.

2.1 Stilllegungsziel und

Rückbaustrategie

Der Rückbau einer kerntechnischen

Anlage ist abgeschlossen, sobald diese

aus dem Geltungsbereich des Atomgesetzes

(AtG) entlassen ist. Eine

Möglichkeit besteht im kompletten

Rückbau der kerntechnischen Anlage

bis hin zur Wiederherstellung der

sprichwörtlichen „Grünen Wiese“.

Alternativ können Gebäudestrukturen

auf dem Gelände verbleiben,

freigegeben und einer anderen

Nutzung zugeführt werden.

Zur Erreichung des Stilllegungsziels

standen in Deutschland bisher

grundsätzlich zwei unterschiedliche

Rückbaustrategien zur Verfügung:

der direkte Rückbau und der sichere

Einschluss mit anschließendem

Rückbau. Mit Inkrafttreten des o. g.

Gesetzes zur Neuordnung der Verantwortung

in der kerntechnischen

Entsorgung wurde das AtG u. a. dahingehend

geändert, dass der sichere

Einschluss als Option für noch stillzulegende

bzw. rückzubauende Anlagen

ausgeschlossen ist. Für die Zukunft

entfällt damit zumindest in Deutschland

die Abwägung zwischen dem

direkten Rückbau und dem sicheren

Einschluss des jeweiligen Kraftwerks.

Für einzelne Komponenten der Anlage

sind aus strahlenschutztechnischen

Gründen jedoch Ausnahmen

möglich. Die betreffenden Komponenten

werden ausgebaut und erst im

Anschluss an eine Abklinglagerung

zerlegt. Dieses Vorgehen bietet sich

DECOMMISSIONING AND WASTE MANAGEMENT 601

Decommissioning and Waste Management

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


atw Vol. 63 (2018) | Issue 11/12 ı November/December

DECOMMISSIONING AND WASTE MANAGEMENT 602

z. B. für Reaktordruckbehälter (RDB)

und die Dampferzeuger aus Druckwasserreaktoren

an und wird z. B.

im KKW Greifswald in Lubmin verfolgt.

Dem Rückbau der kerntechnischen

Anlage ist die Nachbetriebsphase

vorangestellt, die sich an die Leistungs

betriebsphase anschließt und bis

zur Erteilung der Stilllegungsgenehmigung

andauert. In diesem

Zeitraum können nach immer noch

gültiger Betriebsgenehmigung bereits

vorbereitende Maßnahmen getroffen

werden, wie. z. B die Entladung des

Brennstoffs aus dem RDB.

2.2 Anlagenart

Weltweit sind verschiedenste Reaktorkonzepte

in Betrieb. In Deutschland

werden als Leistungs- und Prototypreaktoren

fast ausschließlich Leichtwasserreaktoren

(LWR) eingesetzt,

in denen leichtes Wasser (H 2 O) als

Moderator und zugleich als Kühlmittel

verwendet wird. Der Einfluss

des Reaktortyps auf das Rückbaukonzept

kann gut an einem wesentlichen

Unterschied zwischen Siedewasser-

(SWR) und Druckwasserreaktoren

(DWR) verdeutlicht werden.

Sowohl im SWR als auch im DWR

befinden sich die Brennstäbe im RDB.

Im SWR verdampft das Kühlmittel

direkt und wird über den Wasser-

Dampf-Kreislauf in die Turbine geleitet,

die an einen Generator gekoppelt

ist. Neben den durch Aktivierung entstandenen

Radionukliden führt das

Kühlmittel auch freigewordene Spaltprodukte

mit sich, sodass alle Komponenten

des Kreislaufs kontaminiert

werden. Aus diesem Grund muss bei

SWR das Maschinenhaus, welches

Rohrleitungen, Generator und Kondensator

umgibt, ebenfalls als

Kontrollbereich ausgewiesen werden.

Im Unterschied zu SWR werden

DWR mit zwei separaten Kreisläufen

ausgeführt. Das Kühlmittel führt die

Wärme aus dem RDB ab und transportiert

sie über den Primärkreislauf zu

den Dampferzeugern. In den Dampferzeugern,

der Schnittstelle zwischen

Primär- und Sekundärkreislauf, verdampft

das Speisewasser des Sekundärkreislaufs

und wird über diesen in

die Turbine geführt. Durch diesen

konstruktiven Unterschied beschränkt

sich die Kontamination in DWR

lediglich auf die Komponenten des

Primärkreislaufs.

Auch weitere Bestandteile des

Kraftwerks sind jeweils reaktor- bzw.

anlagenspezifisch auslegt und begründen

jeweils eigene Randbedingungen

für deren Rückbau.

2.3 Kontamination und

Aktivierung

Genauso wie der Leistungsbetrieb ist

der Rückbau einer kerntechnischen

Anlage unvermeidbar mit dem

Umgang mit aktivierten und/oder

kontaminierten Materialien verbunden.

Hiervon können unterschiedliche

Strahlenbelastungen ausgehen.

Die Aktivierung von Materialien

tritt durch die Absorption von Neutronen

ein. Durch diese Wechselwirkung

mit Neutronen werden die bestrahlten

Materialien selbst radioaktiv. Betroffen

sind hiervon hauptsächlich die

Kernbereiche des RDB, seine Einbauten

und der den RDB umgebende

biologische Schild. Eine Dekontamination

aktivierter Materialien ist

nicht möglich, weshalb diese als

radio aktiver Abfall entsorgt werden

müssen. Als Kontamination bezeichnet

man im Gegensatz dazu u. a. die

Anlagerung von Radionukliden an

Oberflächen. Kontaminierte Oberflächen

können durch Dekontaminationsmaßnahmen

zum größten Teil

von Radionukliden befreit werden.

Durch Dekontaminationsmaßnahmen

kann erreicht werden, dass die

nuklidspezifischen Freigabewerte der

Strahlenschutzverordnung (StrlSchV)

unterschritten werden. Die Materialien

verlassen in diesem Fall den

Geltungsbereich des AtG sowie

die strahlenschutzrechtliche Überwachung

und werden freigemessen.

Den rechtlichen Rahmen zur Freigabe

bildet aktuell (s. u.) § 29 StrlSchV.

Die Möglichkeiten der weiteren Verwendung

oder Verwertung bzw. der

Entsorgung sind jeweils abhängig von

der gewählten Freigabeoption. Die

Freigabe von Materialien ist ein entscheidendes

Werkzeug zur Reduktion

des endzulagernden Abfallvolumens.

Beim Rückbau von kerntech nischen

Anlagen entstehen ver schiedene

Materialströme. Unter Anwendung

von Dekontaminationsmaßnahmen

kann die Masse des endzulagernden

radio aktiven Abfalls erheblich verringert

werden. Ent sprechend [2] reduziert

sich beispielhaft die Masse des

endzulagernden radioaktiven Abfalls

für den Rückbau eines DWR-Referenzkraftwerks

durch Dekontamination auf

nur etwa 2,6 % der Gesamtmasse des

Kontroll bereichs. Neben dem Reaktortyp

und der Größe des KKW beeinflusst

auch die Rückbaustrategie die Menge

des endzulagernden Abfalls erheblich

(s. o.).

2.4 Strahlenschutz

Ein weiterer wesentlicher Aspekt

beim Rückbau eines KKW ist der

Strahlenschutz. Insbesondere für

Nachwuchskräfte können die verschiedenen

Dosisbegriffe (Energiedosis,

Organdosis, effektive Dosis,

Ortsdosis, Personendosis etc.) und

die vielfältigen Regelungen zunächst

irritierend wirken.

Zum Schutz von Mensch und Umwelt

vor Schäden durch ionisierende

Strahlung ist der Umgang mit radioaktiven

Stoffen gesetzlich geregelt.

Aktuell wird in der Bundesrepublik

Deutschland die EURATOM-Richtlinie

2013/59/EURATOM in nationales

Recht umgesetzt. Ein wesentlicher

Bestandteil dessen ist das „Gesetz zur

Neuordnung des Rechts zum Schutz

vor der schädlichen Wirkung ionisierender

Strahlung“. Ein Großteil der

rechtlichen Vorschriften zum Strahlenschutz

in kerntechnischen Anlagen

war bisher in der StrlSchV enthalten,

die sich an den Empfehlungen der

Internationalen Strahlenschutzkommission

(International Commission

on Radiological Protection, ICRP), der

ICRP Publikation 103 [5] orientieren.

Im Strahlenschutz gelten im Allgemeinen

die drei Grundsätze Rechtfertigung,

Dosisbegrenzung und Optimierung.

Durch die Beachtung dieser

Prinzipien sollen deterministische

Schäden vermieden und stochastische

Schäden eingegrenzt werden.

Für beruflich strahlenexponierte

Personen werden größere effektive

bzw. Organdosen zugelassen als für

Einzelpersonen der Bevölkerung. In

kerntechnischen Anlagen werden

Strahlenschutzbereiche ausgewiesen,

die in Überwachungs-, Kontroll- und

Sperrbereich eingeteilt sind. Die Einteilung

orientiert sich an der möglichen

Strahlenexposition, die eine

Person im jeweiligen Bereich erfahren

könnte. Die Grenzwerte für beruflich

strahlenexponierte Personen geben

jedoch keine unmittelbare Information

über die tatsächlich vorhandene

Strahlenexposition. Auch für

den Rückbau besteht eine wesentliche

Herausforderung für den Strahlenschutz

darin, die Schutzmaßnahmen

unter gleichzeitiger Beachtung der

Randbedingungen und der Wirtschaftlichkeit

der gewählten Maßnahmen

zu optimieren. International

wird diese Optimierungsaufgabe auch

als ALARA-Prinzip (as low as reasonably

achievable) bezeichnet.

2.5 Verfahrenstechnik

Ein wesentlicher Bestandteil der Erarbeitung

eines Rückbaukonzeptes ist

die Auswahl einer Zerlegetechnik für

die vorgesehene Rückbaumaßnahme.

Hierzu steht eine Vielzahl bereits

Decommissioning and Waste Management

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


atw Vol. 63 (2018) | Issue 11/12 ı November/December

bewährter thermischer und mechanischer

Verfahren zur Verfügung. Die

Auswahl einer geeigneten Zerlegetechnik

geschieht ebenfalls unter

Berücksichtigung der vorliegenden

Randbedingungen, auf deren Grundlage

sich die Zerlegetechniken nach

ihrer technischen Eignung und unter

strahlenschutztechnischen Gesichtspunkten

bewerten lassen. Die technischen

Eigenschaften umfassen u. a.

die trennbare Materialart und -stärke,

die Schnittgeschwindigkeit, die Eignung

zur fernhantierten Manipulation

sowie zum Unterwassereinsatz

und die Prozessrobustheit. Zu den

strahlenschutztechnischen Aspekten

gehören z. B. die Art und Menge des

erzeugten Abfalls, die Bewährtheit

der Zerlegetechnik, die Universalität

und deren Rüst- und Wartungsaufwand.

Die folgenden Beispiele bereits

durchgeführter Rückbaumaßnahmen

an RDB verdeutlichen die Vielfalt

bereits verfügbarer technischer Verfahren.

Trockene Zerlegung

im KKW Würgassen

Das Rückbaukonzept des KKW Würgassen

sah eine trockene Zerlegung

des RDB in Einbaulage vor. Der Rückbau

wurde mit dem Entfernen des

Reaktordruckbehälterdeckels und der

Entnahme der Einbauten aus dem

RDB eingeleitet.

Nach der Trockenlegung wurde

die Innenseite des RDB durch Hochdruckwasserstrahlen

dekontaminiert

und anschließend aus strahlenschutztechnischen

Gründen lackiert: Der

Lack hatte die Aufgabe, verbliebene

Kon taminationen zu binden und

die Freisetzung von kontaminierten

Aero solen während der Zerlegung

zu reduzieren. Zudem wurde der

RDB zur Strahlenabschirmung mit

Wasser gefüllt und der Füllstand

jeweils an den Zerlegefortschritt angepasst.

Die Zerlegung des RDB begann

am Flansch, dem oberen Ende des

zylindrischen Bereichs, auf den

der Reaktordruckbehälterdeckel aufgesetzt

und mit dem dieser verschraubt

wird. Von dort wurde der

RDB von oben nach unten entsprechend

des Schnittplans in insgesamt

252 Segmente geteilt.

Für die Segmentierung des Flansches

kam eine Bandsäge zum

Einsatz. Der zylindrische Teil des

RDB wurde fernbedient durch Wasserabrasivsuspensionsstrahlschneiden

in kleine Teile geschnitten. Anschließend

wurde die Bodenkalotte aus

ihrer Einbaulage gehoben und mit

Hilfe thermischer Verfahren zerlegt.

Die Segmente des Reaktordruckbehälterdeckels,

des Flansches, des

oberen zylindrischen Bereiches und

der Bodenkalotte konnten nach erfolgter

Dekontamination freigegeben

werden. Die restlichen Segmente

mussten endlagergerecht konditioniert

und der Zwischenlagerung am

Standort zugeführt werden.

Zur Vermeidung der Ausbreitung

von Aerosolen fand die trockene

Zerlegung des RDB in einem luftdicht

abgeschlossenen Arbeitsbereich mit

Absaug- und Filtervorrichtung statt.

Unterwasserzerlegung

im Japan Power Demonstration

Reactor (JPDR)

Der Rückbau des RDB im JPDR fand

unter Wasser in Einbaulage statt. Die

besondere Herausforderung lag daher

in der fernbedienten Zerlegung geometrisch

komplexer Strukturen im

Unterwassereinsatz und unter beengten

räumlichen Verhältnissen.

Zuerst wurde der RDB vollständig

freigestellt und seine inneren Einbauten

durch Plasmaschneiden im RDB

fernbedient unter Wasser zerlegt, aus

diesem entnommen und in Stahlcontainern

verpackt. Um den RDB

herum wurde für dessen Rückbau ein

Wasserbecken errichtet, das für die

Zerlegearbeiten mit Wasser geflutet

wurde. Das Wasser diente der Strahlenabschirmung

und zugleich der

Aufnahme der entstehenden Hydrosole.

Die Errichtung des Beckens im

Strahlungsfeld des RDB war allerdings

mit einem hohen technischen

Aufwand verbunden.

Für die fernbediente Zerlegung

des RDB und seines bis zu 270 mm

dicken Flansches wurde die dafür

entwickelte Technik „Arc Saw“ angewendet,

die dem Kontakt-Lichtbogen-

Metall-Trennschleifen (CAMG) entspricht.

Bei diesem Verfahren werden

Hydrosole freigesetzt, was für eine

ausreichende Sichtfähigkeit zusätzliche

Absaug- und Filteranlagen erforderlich

machte.

Die Schnittstücke wurden über

eine fernbediente Einrichtung aus

dem Arbeitsbereich entnommen,

woraufhin diese der Konditionierung

zugeführt wurden.

Abklinglagerung

im KKW Greifswald (KGR)

Im Gegensatz zur direkten Zerlegung

in den beiden vorherigen Beispielen

wird im Rückbaukonzept von fünf

RDB des KGR vor der Zerlegung eine

Abklinglagerung vorgesehen.

Zu den vorbereitenden Maßnahmen

für den Ausbau gehörte

das vollständige Freistellen der RDB

und die Demontage der Einbauten,

die einer separaten Behandlung

zugeführt wurden.

Nach dem Ausbau der RDB aus

ihrer Einbauposition wurden sie

mittels Schwerlasttransporter zur Abklinglagerung

in das Zwischenlager

Nord (ZLN) verbracht, das sich direkt

am Standort des KGR befindet.

Die RDB mussten für den Transport

und die Zwischenlagerung an

stark aktivierten Bereichen abgeschirmt

werden.

Während der mehrjährigen Abklinglagerung

verliert die Komponente

an Aktivität, wodurch die

spätere Zerlegung des RDB verfahrens-

und strahlenschutztechnisch

vereinfacht wird. Die Durchführung

eines solchen Rückbaukonzeptes setzt

voraus, dass die Infrastruktur und die

räumliche Struktur des KKW einen

Ausbau des RDB zulassen. Außerdem

bedingt das Konzept die Verfügbarkeit

von ausreichend Lagerkapazität.

Beim Ausschleusen der RDB muss

zudem sichergestellt werden, dass

keine Radionuklide in die Umwelt

gelangen.

2.6 Entsorgung der

radioaktiven Abfälle

Neben den vielfältigen Herausforderungen

in den Phasen der Planung

und Umsetzung des Rückbaukonzeptes

ergibt sich eine weitere wichtige

Aufgabenstellung aus der Entsorgung

der durch die Kernenergienutzung

entstandenen radioaktiven Abfälle. In

Deutschland wird zwischen Wärme

entwickelnden Abfällen und Abfällen

mit vernachlässigbarer Wärmeentwicklung

unterschieden.

Die hochradioaktiven, Wärme entwickelnden

Abfälle setzen sich in

Deutschland vor allem aus bestrahlten

Brennelementen und den verglasten

Abfällen aus der Wiederaufarbeitung

zusammen. Die radioaktiven Abfälle

aus dem Rückbau kerntechnischer

Anlagen gehören zu den schwachund

mittelradioaktiven Abfällen mit

vernachlässigbarer Wärmeentwicklung.

Für diese ist eine Endlagerung

im planfestgestellten Schacht Konrad

vorgesehen. Die radioaktiven Abfälle

mit vernachlässigbarer Wärmeentwicklung

nehmen nach [16] weniger

als 1 % des Aktivitätsgehalts, jedoch

etwa 90 % des Abfallvolumens ein.

Schacht Konrad befindet sich derzeit

noch im Ausbau zu einem Endlager,

sodass die radioaktiven Abfälle aktuell

noch zwischengelagert werden

DECOMMISSIONING AND WASTE MANAGEMENT 603

Decommissioning and Waste Management

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


atw Vol. 63 (2018) | Issue 11/12 ı November/December

DECOMMISSIONING AND WASTE MANAGEMENT 604

müssen. Mit der Fertigstellung des

betriebsbereiten Endlagers wird nach

[6] im Jahr 2027 gerechnet.

Bevor der radioaktive Abfall in

das Endlager verbracht werden

kann, muss dieser konditioniert

und verpackt werden. Durch die Konditionierung

sollen die Anforderungen

der chemischen Stabilität,

Verfestigung und Abwesenheit von

freiem Wasser erfüllt werden. Zusätzlich

kann durch die Konditionierung

eine Volumenreduktion des Abfalls

erreicht werden. Die Verpackung des

radioaktiven Abfalls ist abhängig von

dessen Aktivität und Volumen und hat

die Aufgabe, die Radionuklide sicher

einzuschließen und eine bessere

Handhabbarkeit zu gewährleisten.

3 Resümee

In den vorherigen Abschnitten werden

einige Herausforderungen und

Randbedingungen skizziert, die mit

dem Rückbau kerntechnischer Anlagen

einhergehen. Im Vergleich zum

Rückbau konventioneller Anlagen

werden die Arbeiten in kerntechnischen

Anlagen durch die radiologische

Belastung erheblich erschwert.

Das Rückbaukonzept muss unter

Berücksichtigung der vielfältigen

Randbedingungen für jede kerntechnische

Anlage individuell erarbeitet

bzw. angepasst werden.

Die Vielseitigkeit der Herausforderungen

im Zusammenhang mit dem

Rückbau kerntechnischer Anlagen

und der Zwischen- bzw. Endlagerung

der radioaktiven Abfälle unterstreicht

die Notwendigkeit einer interdisziplinären

Herangehensweise. Aus rein

technischer Sicht werden für den

erfolgreichen Rückbau nicht nur

fundierte Kenntnisse in der Verfahrenstechnik

und im Strahlenschutz

benötigt, sondern insbesondere auch

auf dem Gebiet der Kerntechnik.

Wegen der großen Anzahl an anstehenden

Rückbauprojekten und noch

ungeklärten Fragen der Zwischenund

Endlagerung der hochradioaktiven

Abfälle wird das Themenfeld

der kerntechnischen Entsorgung

generationenübergreifend präsent

sein. Eine ganzheitliche Betrachtung

schließt damit beispielsweise auch gesellschaftswissenschaftliche,

ethische

und rechtliche Aspekte mit ein, sodass

Spannungsfelder entstehen, die

unterschiedlichste Fachgebiete disziplinär

und interdisziplinär fordern

und transdisziplinär in die Gesellschaft

ausstrahlen müssen. Ein Abriss

über Spannungsfelder, die bei der

Erarbeitung eines Entsorgungskonzeptes

für radioaktive Reststoffe

aufkommen, wird im ENTRIA-Memorandum

[30] gegeben.

Für die erfolgreiche Bewältigung

dieser Aufgabe ist es unabdingbar, die

Entsorgungsforschung und den Nachwuchs

an jungen Fachkräften nach

dem Ausstieg aus der Kernenergie

noch langzeitig zu fördern, um das

Wissen und bereits gewonnene Erfahrungen

weiterzugeben. Jedoch

werden schon heute nur noch wenige

Studierende in der Kerntechnik ausgebildet,

sodass sich nur wenige

Studienangebote mit Bezug zur Kerntechnik

finden lassen. Darüber hinaus

wird in traditionellen technischen

Studiengängen wie dem Maschinenbau

oder Bauingenieurwesen nur

vereinzelt und randständig auf die

vielseitigen Herausforderungen des

Rückbaus und der kerntechnischen

Entsorgung aufmerksam gemacht.

Die wenigen Masterstudiengänge,

die den Rückbau kerntechnischer-

Anlagen thematisieren, sind meist

sehr spezifisch aufgestellt.

Aus der persönlichen Erfahrung:

Aus den vorgenannten Gründen ist es

beispielsweise für mich, David Anton,

als Absolvent des interdisziplinär

angelegten Bachelorstudiengangs

Umweltingenieurwesen, schwierig,

eine Zulassung zu diesen Masterstudiengängen

zu erhalten bzw. die

Zulassung ist mit umfangreichen

Auflagen verbunden.

Für die Hochschulausbildung wäre

es aus meiner Sicht wünschenswert,

die Aufmerksamkeit auch vermehrt

auf den Rückbau kerntechnischer

Anlagen und die Entsorgung radioaktiver

Abfälle zu lenken und dies

durch interdisziplinäre Studienangebote

zu untermauern. Ein Beispiel

für solche Ansätze ist die interdisziplinäre

Ringvorlesung „Kernenergie

und Brennstoffkreislauf“, gehalten

von ENTRIA-Wissenschaftlern unterschiedlicher

Fachrichtungen.

Ich selbst wurde eher zufällig

auf das Gebiet der Kerntechnik aufmerksam,

weil ich über eine Tätigkeit

als studentische Hilfskraft am Institut

für Baustoffe, Massivbau und Brandschutz

(iBMB) der TU Braunschweig

in Kontakt mit Forschungsarbeiten

zum bereits erwähnten Verbund projekt

ENTRIA gekommen bin. Schließlich

verfasste ich die überblicksartig

wiedergegebene Bachelorarbeit, die

gemeinsam vom iBMB und dem

Unterwassertech nikum am Institut

für Werkstoffkunde an der LU Hannover

betreut und geprüft wurde.

In diesem Zusammenhang möchte

ich abschließend den Beteiligten

des Forschungsprojektes ENTRIA

für die Betreuung meiner Bachelorarbeit

und besonders für das Heranführen

an dieses komplexe aber auch

sehr interessante Themenfeld meinen

Dank aussprechen.

Referenzen

[1] Anton, David: Der Rückbau von Leichtwasserreaktoren

unter verfahrens- und

strahlenschutztechnischen Gesichtspunkten.

Technische Universität Braunschweig,

Bachelorarbeit, 2016

[2] “Arbeitskreis Abfallmanagement” VGB

PowerTech e. V. (Hrsg.): Entsorgung von

Kernkraftwerken : Eine technisch

gelöste Aufgabe. Essen : 2011

[3] Bundesamt für kerntechnische Entsorgungssicherheit:

Kerntechnische

Anlagen in Deutschland “In Betrieb“.

URL: https://www.bfe.bund.de/

SharedDocs/Downloads/BfE/DE/

berichte/kt/kernanlagen-betrieb.

pdf?__blob=publicationFile&v=7.

Stand: Januar 2018;

Zugriff: 30. August 2018

[4] Bundesamt für kerntechnische Entsorgungssicherheit:

Kerntechnische

Anlagen in Deutschland “In Stilllegung“.

URL: https://www.bfe.bund.de/

SharedDocs/Downloads/BfE/DE/

berichte/kt/kernanlagen-stilllegung.

pdf?__blob=publicationFile&v=14.

Stand: April 2018;

Zugriff: 30. August 2018

[5] Bundesamt für Strahlenschutz: Die

Empfehlungen der Internationalen

Strahlenschutzkommission (ICRP) von

2007 : ICRP-Veröffentlichung 103

verabschiedet im März 2007;

BfS-Schriften; 47/09. 2009

[6] Bundesgesellschaft für Endlagerung:

Meldung – BGE : 31. März 2018: Einblicke

Nr. 2 unter dem Titel „Konrad.

Einblicke: Fertigstellung 2027 – was

passiert nun?“ URL: https://

www.bge.de/de/meldungen/2018/3/

einblicke-nr-2-veroeffentlicht.

Stand: 31. März 2018;

Zugriff: 30. August 2018

[7] Bundesministerium für Umwelt, Naturschutz,

Bau und Reaktorsicherheit:

Bundeskabinett beschließt neues

Strahlenschutzgesetz. URL: http://

www.bmub.bund.de/pressemitteilung/

bundeskabinett-beschliesst-neuesstrahlenschutzgesetz/?tx_

ttnews%5BbackPid%5D=2471.

Stand: 25. Januar 2017;

Zugriff: 30. August 2018

[8] Bundesministerium für Umwelt, Naturschutz,

Bau und Reaktorsicherheit:

Bundesrat macht den Weg frei für

modernes Strahlenschutzrecht.

URL: http://www.bmub.bund.de/

pressemitteilung/bundesrat-machtden-weg-frei-fuer-modernesstrahlenschutzrecht/.

Stand: 12. Mai

2017; Zugriff: 30. August 2018

[9] Bundesministerium für Umwelt, Naturschutz,

Bau und Reaktorsicherheit:

Neue europäische Vorgaben sollen

umfassenden Strahlenschutz gewährleisten.

Decommissioning and Waste Management

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


Call for Papers

VGB Congress 2019

Innovation in Power Generation

4 and 5 September 2019, Salzburg, Austria

Submit your presentation proposal now!

Innovations are a constant feature of our industry, in our day-to-day business and in

activities involving a long-term planning horizon alike. They are an important means

of reacting to challenges and processes of change. Our goal is to find, develop and

implement technically clever and efficient solutions, because life without the secured

generation and storage of power and heat is unimaginable.

Innovations in power and heat supply are therefore the central themes for the VGB

Congress to be held in Salzburg, Austria on 4 and 5 September 2019.

Topical political, strategic and energy sector related issues will be discussed in the

plenary session on the first day of the congress.

Your Contact

Angela Langen and Ines Moors

E-mail

vgb-congress@vgb.org

Phone

+49 201 8128-310/-274

The second day will focus on your topics relating to:

ı Generation and storage technologies for the future

ı Flexibility options in generation and storage of power and heat

ı Digitalisation in power generation

ı Lessons learned in projects and O&M

ı Optimisation, monitoring and diagnosis

ı Training and education

ı Mothballing and decommissioning of plants

Use your speech to present innovative concepts, developments and solutions

at the VGB Congress 2019, the knowledge-sharing platform for the technical aspects

of the future energy supply.

Selected papers will also be published in the renowned journal VGB POWERTECH,

allowing you to reach an wider readership.

The accompanying exhibition gives operators, manufacturers and service providers

the opportunity to maintain and develop their industry network.

Conference languages

German and English,

simultaneous interpreting service

will be provided.

Please submit your proposal online:

www.vgb.org/kongress_2019_call_for_papers.html

no later than 14 December 2018

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen

Germany

Are you interested in participating as an exhibitor?

Contact: Angela Langen

E-mail: angela.langen@vgb.org

Phone: +49 201 8128-310

VGB PowerTech Service GmbH

Deilbachtal 173

45257 Essen

Germany


atw Vol. 63 (2018) | Issue 11/12 ı November/December

DECOMMISSIONING AND WASTE MANAGEMENT 606

URL: http://www.bmub.

bund.de/themen/atomenergiestrahlenschutz/strahlenschutz/

rechtsvorschriften-technische-regeln/

regelungen-der-eu/. Stand: 05. Dezember

2013; Zugriff: 30. August 2018

[10] Bundesministerium für Umwelt, Naturschutz

und nukleare Sicherheit: Gesetz

zur Neuordnung des Rechts zum Schutz

vor der schädlichen Wirkung ionisierender

Strahlung | Laws | BMU. URL:

https://www.bmu.de/en/law/

gesetz-zur-neuordnung-des-rechtszum-schutz-vor-der-schaedlichenwirkung-ionisierender-strahlung.

Stand: 27. Juni 2017;

Zugriff: 31. August 2017

[11] Bundesrat: Drucksache 768/16

(16.12.2016) : Gesetz zur Neuordnung

der Verantwortung in der kerntechnischen

Entsorgung. Bundesanzeiger

Verlag GmbH, ISSN 0720-2946

[12] Bundesrat: Plenarprotokoll 957 :

BUNDESRAT : Stenografischer Bericht :

957. Sitzung : Berlin, Freitag, den 12.

Mai 2017. URL: http://www.bundesrat.

de/SharedDocs/downloads/DE/

plenarprotokolle/2017/

Plenarprotokoll-957.pdf?__blob=

publicationFile&v=2.

Zugriff: 31. August 2018

[13] Deutsches Atomforum e. V. (Hrsg.):

Stilllegung und Rückbau von Kernkraftwerken.

2013

[14] Deutsches Atomforum e. V. (Hrsg.):

Endlagerung von schwach- und mittelradioaktiven

Stoffen. 2014

[15] Deutsches Atomforum e. V. (Hrsg.): Der

Reaktorunfall in Fukushima Daiichi :

Folge fehlerhafter Auslegung und

unzureichender Sicherheitstechnik.

URL: http://www.kernenergie.de/

kernenergie-wAssets/docs/service/

024reaktorunfall_fukushima.pdf.

Stand: März 2015;

Zugriff: 31. August 2018

[16] Deutsches Atomforum e. V. (Hrsg.):

Endlagerung hochradioaktiver Abfälle.

2015

[17] Deutsches Atomforum e. V. (Hrsg.):

Zwischenlagerung radioaktiver Abfälle

in Deutschland. 2015

Strahlenschutz e.V. zur Umsetzung der

Direktive 2013/59/Euratom. URL:

http://www.fs-ev.org/fileadmin/

user_upload/09_Themen/EU_BSS/

FS-Stellungnahme_zu_den_EU_BSS_

final.pdf. Zugriff: 31. August 2018

[22] Fujiki, Kazuo ; Kamike, Kouzou ; Seiki,

Yoshihiro ; Yokota, Mitsuo: Techniques

and experiences in Decommissioning of

Japan power demonstration reactor. In:

Société francaise d’énergie nucléaire

(Hrsg.): International Conference on

Dismantling of Nuclear Facilities :

Policies – Techniques. 29.09.-

02.10.1992 in Avignon. Paris, 1993,

S. 219-232

[23] Japan Atomic Energy Agency: JPDR

( Japan Power Demonstration Reactor).

URL: https://www.jaea.go.jp/

english/04/ntokai/decommissioning/

01/decommissioning_01_01_02.html.

Zugriff: 22. Juni 2016

[24] Kaulard, Jörg ; Brendebach, Boris ;

Strub, Erik: Strahlenschutzaspekte

gängiger Abbau- und Dekontaminationstechniken

(GRS-270). URL: https://

www.grs.de/sites/default/files/pdf/

GRS-270.pdf. Stand: 2010;

Zugriff: 31. August 2018

[25] Klimmek, Peter ; E.ON (Hrsg.): AKW

Würgassen : Das Rückbaufinale. URL:

https://www.youtube.com/

watch?v=McZz_r1QXWo. Stand: 11.

Mai 2015; Zugriff: 31. August 2018

[26] Klimmek, Peter ; E.ON (Hrsg.): AKW

Würgassen : Zerlegung des Reaktordruckgefäßes.

URL: https://

www.youtube.com/watch?v=

TBbHcma8Q9c. Stand: 11. Mai 2015;

Zugriff: 31. August 2018

[27] Kremer, Guido: Weiterentwicklung von

Verfahren zur Kontakt-Lichtbogen-

Metall-Bearbeitung. Leibniz Universität

Hannover, Dissertation, 2008

[28] Krieger, Hanno: Grundlagen der Strahlungsphysik

und des Strahlenschutzes.

Wiesbaden : Vieweg+Teubner Verlag,

2012

[29] Neles, Julia Mareike ; Pistner, Christoph

(Hrsg.): Eine Technik für die Zukunft?.

Berlin ; Heidelberg : Springer-Verlag,

2012

[37] Wilde, Felix: Rückbau kerntechnischer

Anlagen. Fachhochschule Stuttgart,

Diplomarbeit, GRIN Verlag, 2006

[38] Zahoransky, Richard (Hrsg.): Energietechnik

: Systeme zur Energieumwandlung.

Kompaktwissen für Studium und

Beruf. Wiesbaden : Vieweg+Teubner

Verlag, 2010

[39] Ziegler, Albert ; Allelein, Hans-Josef

(Hrsg.): Reaktortechnik : Physikalischtechnische

Grundlagen. Berlin ;

Heidelberg : Springer-Verlag, 2013

Authors

David Anton

Dipl.-Ing. Manuel Reichardt

Dr.-Ing. Thomas Hassel

Bereichsleiter Unterwassertechnikum

Hannover (UWTH)

Institut für Werkstoffkunde

Unterwassertechnikum

am Institut für Werkstoffkunde

Produktionstechnisches Zentrum

Hannover, UWTH

Lise-Meitner-Str. 1

30823 Garbsen, Deutschland

Professor Dr.-Ing.

Harald Budelmann

Technische Universität

Braunschweig

Institut für Baustoffe, Massivbau

und Brandschutz

Fachgebiet Baustoffe

Beethovenstraße 52

38106 Braunschweig, Deutschland

[18] Entsorgungswerk für Nuklearanlagen

(EWN). URL: http://www.ewngmbh.de/.

Stand: 1. September 2015;

Zugriff: 18. Juni 2016

[19] E.ON Kernkraft GmbH: Vom Kernkraftwerk

zur “Grünen Wiese“ : Stilllegung

und Rückbau des Kernkraftwerks

Würgassen. URL: http://www.eon.com/

content/dam/eon-com/

Geschaeftsfelder/Nuclear/assetprofiles/wuergassen-power-plant/

rueckbau_wuergassen_010403.pdf.

Stand: August 2008;

Zugriff: 12. Juni 2016

[20] E.ON Kernkraft GmbH: Kernkraftwerk

Würgassen : 12 Jahre erfolgreicher

Rückbau. URL: http://www.eon.com/

content/dam/eon-com/

Geschaeftsfelder/Nuclear/assetprofiles/wuergassen-power-plant/

KKW_12J_Rueckbau.pdf.

Zugriff: 13. Juni 2016

[21] Fachverband für Strahlenschutz e.V.:

Stellungnahme des Deutsch-Schweizerischen

Fachverbandes für

[30] Röhlig, Klaus-Jürgen et al.: ENTRIA

2014 : Memorandum zur Entsorgung

hochradioaktiver Reststoffe. Hannover

[31] Stolz, Werner: Radioaktivität : Grundlagen

– Messung – Anwendung. 5. Aufl.

Wiesbaden : B. G. Teubner Verlag/

GWV Fachverlage GmbH, 2005

[32] Thierfeldt, S. ; Schartmann, F. ; Brenk

Systemplanung GmbH (Hrsg.): Stilllegung

und Rückbau kerntechnischer

Anlagen. Aachen : 2009

[33] Atomgesetz. In: Umweltrecht. 25. Auflage

München : Beck-Texte im dtv, 2015

[34] Vogt, Hans-Gerrit ; Schultz, Heinrich:

Grundzüge des praktischen Strahlenschutzes.

München ; Wien :Carl Hanser

Verlag, 2011

[35] Volkmer, Martin ; Deutsches Atomforum

e. V. (Hrsg.): Radioaktivität und

Strahlenschutz. Berlin : 2012

[36] Volkmer, Martin ; Deutsches Atomforum

e. V. (Hrsg.): Kernenergie Basiswissen.

Berlin: 2013

Decommissioning and Waste Management

Decommissioning of Nuclear Facilities: An Interdisciplinary Task for Junior Staff ı David Anton, Manuel Reichardt, Thomas Hassel and Harald Budelmann


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Kurchatov Institute’s Critical Assemblies

Andrej Yurjewitsch Gagarinskiy

Since its establishment, the Kurchatov Institute of Atomic Energy (now National Research Centre “Kurchatov

Institute”) was always involved in R&D on nuclear reactors for various applications. This activity required dedicated

critical facilities (whose number, design and purpose naturally varied with time).

This paper reviews the status of the

Kurchatov Institute’s experimental

park that includes more than ten

critical assemblies intended for R&D

for power (VVER, RBMK, HTGR), ship

and space reactors.

1 Introduction

Even the very first critical experiments

Igor Kurchatov has performed in 1946

in the institute that now bears his

name have confirmed unique advantages

offered by so-called “zero power”

reactors, or critical assemblies [1],

that were widely used in experiments

ever since. Thanks to their experimentfriendly

range of kinetic response to

varying critical conditions, as well as

to their largely power-invariant neutronic

parameters, critical assemblies

enable realistic simulation of in-core

neutronic processes.

In 1953, the Kurchatov Institute has

launched its first critical assembly

simulating a power reactor core to

identify water-cooled and -moderated

reactor parameters, such as critical

mass, efficiency of control rods and

temperature effects [2].

Since then, the Kurchatov Institute

has performed thousands of experiments

with uranium systems moderated

by water, hydrogen-containing

substances (zirconium hydride, polyethylene

and their combinations),

beryllium and graphite, with wideranging

U-235 enrichments (to 96 %)

and moderator-to-uranium nuclear

concentrations’ ratios (Figure 1)

[3, 4].

Experiments simulating future

reactor core as accurately as possible

to assess the key reactor parameters

with minimal error had a long-lasting

significance. As time went on, other

research centres and even some plants

and design organizations have joined

the Kurchatov Institute in performing

critical experiments, since these have

often been nothing else than fabrication

quality tests and designer

customization of actual cores. Such

experiments yielded a major share of

total criticality data; however, they

often cannot be used for software improvement

even at the state of the art.

On the other hand, experiments

with critical assemblies having simple

geometry, well-described composition

and hence relatively low measuring

errors (mostly due to uncertain

knowledge of these very geometry

and composition) yielded the “gold

data pool” that enabled – and still

contributes to – further development

and improvement of computational

software.

2 Benchmark experiments

and international

databases

Selection of reference – or benchmark

– experiments performed on simple

critical systems were launched in the

1960ies in order to ultimately produce

a database to underlay reactor software

verification (that proceeded

from limited data arrays for many

years).

For example, measurements of

critical parameters of uniform U-

water bundles consisting of U dioxide

rods performed at temperatures

ranging between 20 and 280 °C can

illustrate this class of experiments.

These measurements – suggested by

the author and performed by the

research team he headed in the Kurchatov

Institute in late 1970ies [5] –

were unique in the world practice, as

it turned out later. In these experiments,

high excess reactivity that

varied with the critical assembly

heatup in a pressure vessel was compensated

by the central core section

moving relative to a fixed circle of

rods. Critical size of “unexcited” uniform

lattices were identified by aligning

the moving core section with the

fixed one; i.e. in fact the temperature

when “correct-geometry” cores became

exactly critical was actually

measured. Figure 2 shows respective

data for hexagonal lattices consisting

of rods enriched to 10% of U-235 at

three different ratios of hydrogen and

U-235.

In 1992, the U.S. Department of

Energy has initiated – and Idaho

National Laboratory has suggested

and implemented – a new data

selection approach called Criticality

Safety Benchmark Evaluation Project

( CSBEP) [6, 7], whose main idea

was to collect all available – and

meeting some specific requirements

Revised version of a

paper presented at

the RRFM 2018,

11 - 15 May 2018 in

Munich, Germany

| | Fig. 1.

235 U enrichment and moderator-to- 235 U uranium nuclear concentrations’

ratio in critical experiments performed in the Kurchatov Institute.

| | Fig. 2.

Critical radius of hexagonal fuel rod bundles

depending on temperature:

1 – • – rH / r5 = 49; 2 – p – 331; 3 – i – 614

(points = experiment; lines = computation).

– experimental criticality data, convert

them into some standard format

and organize their evaluation by

independent experts. In 1995, this

initiative has developed into the International

Criticality Safety Benchmark

Evaluation Project (ICSBEP) performed

under the auspices of the

Organization for Economic Cooperation

and Development (OECD) in order

to preserve the hard-won data of

the 20 th century’s “nuclear legacy”

607

RESEARCH AND INNOVATION

Research and Innovation

Kurchatov Institute’s Critical Assemblies ı Andrej Yurjewitsch Gagarinskiy


atw Vol. 63 (2018) | Issue 11/12 ı November/December

RESEARCH AND INNOVATION 608

(including military experimental data

that were declassified at that time)

and to prevent their irretrievable loss

with the demise of their authors.

The rate of data contribution to

the ICSBEP database was at its highest

in late 1990ies – early 2000ies, and

naturally died out by 2010, when

archive data fit for the project came

to the end. By 2014, this database

included data on over 5000 configurations

of critical (and even some subcritical)

systems provided by 20 countries,

including Russia, which joined

the project in 1994 and became its

second largest (after the United

States) contributor providing over

15% of its total data (this share is

much higher if we consider uranium

systems only).

At the same time, the imperative

need to preserve all reactor physics

experimental data, including measuring

methods and techniques became

increasingly obvious. Therefore, in

1999 the Nuclear Science Committee

of the OECD Nuclear Energy Agency

(NSC/NEA/OECD) has launched its

International Reactor Physics Experiment

Evaluation Project (IRPhEP)

[7], as a logical follow-up and extension

of the ICSBEP. In 2003, the

IRPhEP became NEA’s official project

aiming to compile a pre-evaluated

reactor physics benchmark dataset to

be used for next-generation reactor

design and safety evaluation. As of

2014, the IRPhEP database included

the data yielded by 136 experiments

performed on 48 critical assemblies in

20 countries (including Russia and

the Kurchatov Institute) [8].

3 Neutronic experiments

and critical assemblies of

the Kurchatov Institute

Most of Russian critical experiments

of relatively simple geometry and

composition were performed between

1960ies and early 1980ies by just four

nuclear research centres to develop

various reactors and other facilities

required at the time. The IPPE has

mostly focused on U and Pu fast

neutron systems (and, to a smaller

extent, on liquid-salt and uraniumwater

ones), while VNIIEF and VNIITF,

starting from late 1990ies, have

published the data of a large series of

critical experiments that involved a

quasi-homogeneous assemblies of

simple geometry with highly enriched

metallic U and Pu-239. The Kurchatov

Institute, as mentioned above, has

performed experiments with uranium

systems moderated by water, hydrogen-containing

substances (zirconium

hydride, polyethylene and their combinations),

beryllium and graphite.

Below follows a brief overview of

Kurchatov Institute’s critical experiments

from their “golden age” to the

present day, including the evolution of

relevant experimental base, whose

current status is shown in Table 1 [9].

NPP reactors

NPP reactor research developed along

several lines. Critical experiments

with water-moderated assemblies to

validate VVER reactor physics have

started in 1950ies from several assemblies,

allowing for full-scale study of

VVER-440 and VVER-1000 reactor

cores.

An important achievement regarding

VVER lattices were high-precision

experiments performed under scientific

guidance and supervision of the

Kurchatov Institute in Hungary and

Czechoslovakia on ZR-6 and LR-0

critical assemblies, respectively. It

should be noted that ZR-6 experiments

have set a pattern for many

experimental groups, since they have

included a detailed study of how the

uncertainties associated with core

geometry, composition, etc., impact

on neutronic parameters [10].

Today the Kurchatov Institute has

three critical assemblies (P, SK-phys

and V-1000) tailored to solve the

tasks of evolutionary development

of VVERs, including their very latest

generation, so-called SUPER-VVER.

The list of experiments already performed

or planned on these assemblies

includes:

• spectral shift simulation;

• identification of neutronic parameters

of systems containing various

fuels (U-Gd, U-Er; recovered U,

ceramic- or steel-clad “tolerant”

fuel, etc.);

• effect of higher steam content on

multiplication properties of the

core (for larger VVERs);

• identification of neutronic parameters

of systems with square lattices

(TVS-K fuel for PWRs).

Multiple critical experiments were

also performed with U-graphite

assemblies, allowing for varied fuel

content (metallic U or uranium

dioxide), U-235 enrichment (from the

natural level to 2.4%), lattice pitch

and water content into channels

Assembly name Assembly type Thermal power, kW Physical startup year Remark

SF-1 U – H 2 O 0.1 1961 Modernized in 1996

Efir-2M U – H 2 O 0.1 1973 Long-term shut-down

SF-7 U – H 2 O 0.1 1975 Modernized with life extension to 2029

Maket U – D 2 O 0.1 1977 Reconstructed in 1983

Grog U – C 0.1 1980 Long-term shut-down

Astra U – C 0.1 1981 Modernization with electric heat-up planned

RBMK U – C 0.02 1982

Narcisse-M2 U – ZrH x 0.01 1983 Permanent shut-down

PIK (phys.model) U – H 2 O 0.1 1983

Delta U – H 2 O 0.1 1985 Modernized with life extension to 2029

V-1000 U – H 2 O 0.2 1986 Life extended to 2029

P U – H 2 O 0.2 1987 Modernized with life extension to 2029

Kvant U – H 2 O 1.0 1990

SK-phys U – H 2 O 0.6 1997

RP-50 (Aksamit) U – H 2 O – ZrH x 0.1 2013

| | Tab. 1.

Kurchatov Institute’s critical assemblies as of 2017.

Research and Innovation

Kurchatov Institute’s Critical Assemblies ı Andrej Yurjewitsch Gagarinskiy


atw Vol. 63 (2018) | Issue 11/12 ı November/December

– including the experiments with less

graphite per cell and erbium burnable

poison. The RBMK assembly con tinues

to provide scientific support to operating

RBMK reactors (that generate a

half of the country’s total electricity)

to further improve their safety and

economy (tests of new scram rods

and profiled assemblies, subcriticality

tests, etc.). Testing at the Kurchatov

Institute’s RBMK assembly is a mandatory

prerequisite for any component

to be loaded into the core of

operating RBMK-1000.

High-temperature gas-cooled

reactors

Since early 1980ies, the Kurchatov

Institute operates its Grog and Astra

critical assemblies intended for simulation

of high-temperature gas-cooled

reactors (HTGRs) and other uraniumgraphite

reactors of varied core

geometry, structure and composition,

with spherical and cylindrical fuel

elements enriched up to 21 % of

U-235.

In particular, multiple experiments

were initially performed at the Astra

to validate some safety parameters of

Russian HTGR designs (VG-400, VGM

and others). Later, international projects

such as GT-MHR (Russia and

USA) and RBMR (South Africa) used

the Astra for high-precision experiments

with circular cores.

Astra’s plans for the next few years

(so-called Hot Astra Project) are as

follows:

• equipment modification and experiments

with electric heatup;

• compilation of a new database to

validate multi-physical approaches

to future reactor designs.

Ship and space reactors

However, most systems explored in

the Kurchatov Institute belong to

small nuclear facilities intended for

various applications [11]. Respective

critical assemblies were moderated

by water, zirconium hydride or beryllium,

consisted of different fuel rods

enriched from 5 to 96 % of U-235, and

had hydrogen-to-U-235 concentration

ratios and temperatures ranging from

25 to 1000 and from 20 to 300 °C,

respectively. For the very first time,

the Kurchatov Institute has published

its criticality data related to hydrogenand

beryllium-moderated assemblies

of simple geometry at the 3 rd Geneva

Conference on Peaceful Uses of

Atomic Energy. Subsequent publications

were somewhat sporadic.

Nevertheless, many of these experiments

had simple geometry and

well-described fuel composition, and

were therefore included in the benchmark

database.

As regards ship reactor experiments,

starting from the early 1960ies,

the Kurchatov Institute has deployed

eight universal critical assemblies,

including a high-temperature one

(with working coolant temperature of

300 °C and pressure of up to 200 kg/

cm 2 ) and a high-flux one (with neutron

flux of up to ~10 9 cm -2 ×s -1 . The

latter – Kvant – is currently in high

demand as a reference thermal neutron

source for calibration of in-core

detectors, irradiation of test samples,

etc. Today four of these assemblies

(SF-1, SF-7, Delta and Kvant) will

continue operating to minimize computer

simulation errors and to confirm

full-scale core parameters.

For space reactor experiments, the

Kurchatov Institute previously had

the Narcisse critical assembly, where

it has performed comprehensive

experiments simulating the reactors

with direct conversion of heat to

electricity. Presently the Institute is

actively operating its new critical

assembly launched in 2013 – the only

one built in this century to meet

the new requirements of the space

industry [12]. Intended for study of

the RP-50 thermionic converter, this

assembly uses highly enriched fuel

(96 % of U-235), control rods with

B-10-enriched boron carbide, and

metallic beryllium/beryllium oxide

reflectors (Figure 3). Current plans

are to start moderating this assembly

with zirconium hydride instead of

water.

It should be noted that the data

yielded by these – and other – experiments

performed at almost all critical

assemblies of the Kurchatov Institute

have been included in ICSBEP and

IRPhEP international database.

Conclusion

National Research Centre “Kurchatov

Institute” preserves all capacities –

such as assemblies, nuclear fuel,

instrumentation and qualified personnel

– necessary for critical experiments.

Such experiments – though

not very numerous, but highly accurate

and well documented – stay in

demand due to continued development

of new reactor facilities and

assurance of safe operation of existing

ones. These trends correspond to

world practices, where the successfully

developing IRPhEP Project

does not focus on preserving and consolidating

the available data only, but

also identifies areas that need new

| | Fig. 3.

Critical assembly simulating RP-50 thermionic converter.

data, as well as plans for further

experiments.

Multiple start-ups of VVERs-1000

confirm that Russian experts, including

the Kurchatov ones, are in good

position to contribute to this expanding

international base of multiphysical

(i.e. neutronic plus thermohydraulic)

experimental benchmark

data.

References

1. I.V. Kurchatov, I.S. Panasyuk. In: Some

papers of I.V. Kurchatov Institute of

Atomic Energy. Energoatomizdat,

Moscow, 1982, pp. 7-26 (in Russian).

2. G.A. Gladkov, Yu.V. Nikolski. USSR’s first

water-water critical assemblies.

Atomnaya Energiya, v. 90, Issue 2,

February 2001, pp. 88-90 (in Russian).

3. A.Yu. Gagarinski. Critical benchmark

experiments in RRC Kurchatov Institute.

Atomnaya Energiya, v. 84, Issue 6, June

1998, pp. 495-501 (in Russian).

4. A.A. Bykov, A.Yu. Gagarinski, E.S. Glushkov

et al. Programs of Experiments with

Critical Assemblies at the Russian

Research Centre “Kurchatov Institute”.

Nuclear Science and Engineering,

v. 145, 181-187 (2003).

5. A.Yu. Gagarinski, N.A. Lazukov, D.A.

Mastin et al. Reactivity temperature

effects in uniform U-water critical

assemblies in the range of 20-280 °C.

Voprosy Atomnoi Nauki I Techniki,

Issue 5(18), Moscow, NIKIET, 1981,

pp. 113–117 (in Russian).

6. J. Blair Briggs. The Activities of International

Criticality Safety Benchmark

Evaluation Project (ICSBEP). Journal of

Nuclear Science and Technology,

Suppl. 2, pp. 1427-1432, August 2002.

7. J. Blair Briggs, John D. Bess, Jim

Gulliford. Integral Benchmark Data for

Nuclear Data Testing through the ICSBEP

& IRPhEP. International Conference on

Nuclear Data for Science and Technology,

INL/CON-12-26696, March 2013.

8. John D. Bess, J. Blair Briggs, Jim

Guilford, Ian Hill. Current Status of the

IRPhEP and ICSBEP (August 2014).

THTR Conference, Portland, Oregon,

August 4008, 2014.

RESEARCH AND INNOVATION 609

Research and Innovation

Kurchatov Institute’s Critical Assemblies ı Andrej Yurjewitsch Gagarinskiy


atw Vol. 63 (2018) | Issue 11/12 ı November/December

610

AMNT 2018

9. M.V. Kovalchuk, V.I. Ilgisonis, Ya.I.

Strombach, A.S. Kurski, D.V. Andreev.

Development of experimental reactor

base in NRC Kurchatov Institute: from

the start of F-1 to the 60 th jubilee of

IR-8. Voprosy Atomnoi Nauki I Techniki,

Issue 3, 2017, pp. 4–17 (in Russian).

10. Experimental Studies of the Physics of

VVER-Type Uranium-Water Lattices. In:

Proc. Temporary International Team,

v.1, Academial Kiado, Budapest, 1984.

11. A.Yu. Gagarinskiy. High-precision neutronic

experiments in NRC Kurchatov

Institute. Atomnaya Energiya, v. 120,

Issue 4, 2016, pp. 191-197 (in Russian).

12. V.A. Usov, N.P. Moroz, G.V. Kompaniets.

Basic results of physical startup tests of

the AKSAMIT critical assembly

simulating RP-50 thermionic converter.

In: Innovative nuclear energy designs

and technologies, NIKIET, October

2014.

Authors

Andrej Yurjewitsch Gagarinskiy

National Research Centre

“Kurchatov Institute”

Moscow, Russian Federation

Kurchatov square,

123182 Moscow, Russia

49 th Annual Meeting on Nuclear Technology (AMNT 2018)

Key Topic | Enhanced Safety & Operation Excellence

Focus Session

“International Operational Experience”

Ludger Mohrbach

The following report summarises the presentations of the Focus International Operational Experience presented at

the 49 th AMNT 2018, Berlin, 29 to 30 May 2018. The other Focus, Topical and Technical Sessions will be covered in

further issues of atw.

Today, 449 nuclear units with nearly

400 GW of net capacity produce about

11% of all world-wide electricity,

equivalent to about 4.5 % of all human

energy consumption.

In the coming years, nuclear capacities

and production will slowly rise,

as six to ten units are earmarked for

commissioning in every coming year,

over-compensating capacity losses.

Most of these units provide

depend able baseload power, but in

markets with volatile in-feeds also

increasingly grid services and peakload

power, for which nuclear plants

are technically well equipped.

Correspondingly, this focus session

covered six exemplary facets from

nuclear power plant operation:

• Results of the QUENCH-LOCA

experiments (improving the

knowledge base on fuel performance

under accident conditions),

• Practical aspects of safeguards,

• Employments effects of nuclear

(in comparison to other power

generation technologies),

• The new QP-data bank (“Quality

Products”) for lubricants and other

consumables in nuclear power

plants,

• Flood protection for nuclear sites,

and

• Benefits of simulator training.

The first presentation, titled Summary

of the QUENCH-LOCA Ex perimental

Programme was pro vided by

Dr. Andreas Wensauer, PreussenElektra,

Hannover, inter alia member of the

working panel “Reactor Core” of the

operator’s association VGB. This panel

has been the operator’s representative

body for the monitoring of these

tests, performed at the KIT Karlsruhe

Institute for Technology since 2010 (see

Große/Walter/Stuckert/Steinbrück)

and designed to re-validate the “LOCA

Criteria”, i.e. to investigate the burst

behavior of modern fuel claddings

under Loss-Of-Coolant-Accident conditions

and high burn-ups.

The results have significantly improved

the knowledge base for hydrogenation-

and oxidation-driven fuel

cladding embrittlement for cladding

materials Zry-4, M5 and Optimized

ZIRLO under these conditions, thus

delivering a valuable extra input for

the embrittlement behavior criteria

definition like “maximum cladding

temperature” and “equivalent cladding

reacted”, as such defined as early

as 1973 by the US-Nuclear Regulatory

Commission for the modelling of fuel

behavior under hypothetical Loss-of-

Coolant-Accident conditions.

The second contribution to the

session came from Dr. Irmgard

Niemeyer, Forschungszentrum Jülich

GmbH, who reported on Practical

Safeguards in Nuclear Power Plants.

Mass balancing of nuclear, especially

fissile material inventories is

an obligation for every operator underlying

the regulation of the United

Nations “Non-Proliferation Treaty”,

ratified in 1974, amended afterwards

and effective now in 191 states. The

UN has entitled the International

Atomic Energy Agency IAEA with the

task to supervise compliance with

these rules, effectively applying safeguards

on each site, e.g. by regular

inspections and continuous monitoring.

Within the EU, EURATOM has

taken over responsibility.

In general, one (announced) physical

inventory verification per site per

year, amended by random inspections

and further announced inspections

for MOX and spent fuel transfers to

dry storage facilities. Main surveillance

instruments are seals and

cameras, but also advanced technologies

like “Digital Cerenkov Viewing

Devices” for spent fuel pool verifications

or laser curtains.

In order to minimize effort and

costs for both inspectors and the

inspected, the operators of nuclear

installations (especially nuclear power

plants) have qualified – and will subsequently

increasingly apply – automated

processes and online data transmission.

Several applications have already

been developed, including internetbased

transmission of seal and camera

data, thus saving physical inspections.

As third contribution Comparison

of Employment Effects of Low-

Carbon Generation Technologies

had been intended to be presented by

Dr. ­Geoffrey Rothwell, OECD-Nuclear

Energy Agency, Paris.

AMNT 2018

Focus Session “International Operational Experience” ı Ludger Mohrbach


Frühbucherrabatt!

Bis 31. Januar 2019 registrieren

und bis zu 170 € sparen.

7. – 8. Mai 2019

Estrel Convention Center Berlin, Deutschland

www.unserejahrestagung.de

#50AMNT

Rückbau und Entsorgung

im Fokus

Unsere Jahrestagung bietet mit einer Vielzahl an Vorträgen und Diskussionen

in Plenarsitzung, Technischen Sitzungen und Fokussitzungen ein zweitägiges

Programm der Extraklasse. Experten aus Theorie und Praxis erörtern aktuelle

Fragestellungen und neueste Erkenntnisse.

Diskutieren auch Sie über Entwicklungen und Herausforderungen bei Stilllegung,

Rückbau und Entsorgung.

Registrieren Sie sich jetzt

› www.amnt2019.com

Key Topics

Outstanding Know-How & Sustainable Innovations

Enhanced Safety & Operation Excellence

Decommissioning Experience & Waste Management Solutions

Medien Partner

Unsere Jahrestagung – das Original seit 50 Jahren.


atw Vol. 63 (2018) | Issue 11/12 ı November/December

612

AMNT 2018

This first-of-a-kind study had

found a remarkable advantage of

nuclear power production, often overlooked

in public discussion: The fact

that practically all of the money spent

for a nuclear kWh remains within

the domestic value chain, because

uranium mining requires only less

than 2 % of the production cost,

whereas all the rest can be attributed

to high-tech components, spare

parts, services and mostly high-paid

domestic jobs.

With other types of electricity

generation, much more than half of

each Euro spent for a kWh goes to fuel

providers (lignite, hard coal, even

more extensively in the case of gas) or

assembly-line produced hardware

(solar, also wind). Because of this

(economic) effect and because of its

easy upfront fuel storage potential in

the fuel production process, nuclear

is in practice a “domestic” energy

source, with all the benefits for its

owners and customers. This significant

quality has always been

underestimated in public discussions

and underweighted in power option

scenarios.

Nevertheless, the presentation was

embargoed shortly before the event,

and the trip to Berlin for its author was

denied on short notice.

However, the organizer could refer

to a corresponding press release from

WNN “www.World-Nuclear-News.or/

NN-Jobs-for-two-centuries-in-nuclear”,

from 15 September 2017, quoting:

“Some 200.000 job-years of employment

are created by each 1000

MWe of nuclear capacity constructed,

according to a new study by the

OECD Nuclear Energy Agency and

the IAEA”.

The press release also quotes a

2010 study by D Harker and

P Hirschboeck, who found the job

intensity of nuclear to be half of

( photovoltaic) solar, comparable to

small hydro and concentrating solar,

but ten times higher in comparison to

combined cycle gas or wind energy.

After the break, the session continued

with the presentation of a new

practical tool for the Application of

Lubricants and other Consumables

in Nuclear Power Plants: The new

VGB QP-Data Bank, presented by

Dr. Fred Böttcher, EnBW Kernkraft,

Neckarwestheim, and co-authored by

Dr. rer. nat. Dittmar Rutschow, VGB

PowerTech e.V., Essen.

In this data bank all documentation

for the application of today about

1500 lubricants, detergents, fluids

and other consumables (e.g. markers,

degreasing agents, abrasives, testing

agents, sealings) in nuclear power

plants is collected and provided for

day-to-day quick-notice application.

The data bank follows similar external

installations (by manufacturers), it is

fed by the operators themselves on

a non-profit base, and available to

all contributing VGB members. For

detailed information either the

authors or the chairman of the VGB

working group “Chemistry in Nuclear

Power Plants”, Dr. Timo Stoll, Kernkraftwerk

Emsland, can be contacted.

In principle, the data bank is also open

for non-nuclear applications. Furthermore,

the VGB chemistry laboratory

offers specimen tests for a reasonable

remuneration.

The fifth contribution covered

Recent Developments for the Flood

Protection Design Concerning

Nuclear Power Plants, authored by

Prof. Dr.-Ing. Jürgen Jensen ( presenter)

and MSc Sebastian Niehüser, both

Universität Siegen, Dipl.-Ing. Katrin

Borowski, RWE Nuclear, Essen, and

Dr. Thomas Tittel, PreussenElektra,

Hannover.

Triggered by the Fukushima event,

nuclear sites around the world have

been re-evaluated also in terms of

their flooding resilience, both on

coastal or river sites. In Europe the

“EU Stress test” has found no deficiencies

in nuclear site protection in any

way comparable to Fukushima’s 10m

ground height above sea level and a

14m-high tsunami.

In Germany, the parallel “RSK-

Safety Check” performed in 2011

came to the same conclusion, furthermore

it identified extra robustness

levels for each site.

Prof. Jensen gave an overview on

the historic development and today’s

state-of-the-art, incorporating recent

scientific evidence on increasing rainfall

consequences and sea level rise

due to global warming. Governing

effect of course is the increased

probability and intensity of gale force

wind events with corresponding precipitation,

requiring site-specific and

prospective analyses. In consequence,

levee heights and qualities are and

will have to be increased and improved

continuously on every coast

and river bank, requiring investments

and careful maintenance.

Quantifying the “necessary” height

of flood protection installations

should, however, not only be based

on probabilistic calculations using

historical data, but should take also

into account the “physically based

upper limits”.

The last contribution Benefits of

Simulator Training was presented by

Dipl.-Ing. Dietmar Dusmann, Simulatorzentrum

KSG/ GfS, Essen.

In Germany the simulator training

for practically all nuclear power plants

has traditionally been pooled in Essen,

for the last decades in a purpose-build

simulator center building in Essen-

Kupferdreh. The operators of the

Dutch plant Borssele have also delegated

their simulator training to this

installation.

All regular education and retraining

is performed at the training

center, which thus could centralize

and continuously develop and

advance its expertise, including

development of components, simulator

software and control room

procedures, the latter including

human- factor related issues and

beyond- design accident management

procedures.

In this capacity the center has

gathered unique and world-class

simulator know-how, now increasingly

also available for non-nuclear

applications, as the German nuclear

units will continuously be released

from regulator oversight in the course

of the phase-out programme decided

by the government.

Author

Dr. Ludger Mohrbach

Head Nuclaer Power Plants

VGB PowerTech e.V.

Deilbachtal 173

45257 Essen, Germany

AMNT 2018

Focus Session “International Operational Experience” ı Ludger Mohrbach


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Inside

613

Vielfalt der Kerntechnik

Die KTG Junge Generation auf der

Nachwuchstagung 2018 in Garching

Atomei genannt – ermöglicht. Er wurde 1957 als erste

kerntechnische Anlage Deutschlands erbaut, im Jahr

2000 abgeschaltet und 2004 durch den danebenstehende

FRM-ll mit einer höheren Leistung ersetzt. Die Außenhülle

des alten FRM ist heute denkmalgeschützt.

Im FRM-II wurden sowohl dessen technische Konzeption

als auch aktuelle Forschungsarbeiten und

Anwendungen z. B. in der Medizin vorgestellt. Neben der

Herstellung von Radiopharmaka können bspw. mit

Neutronenstrahlen materialtechnische Untersuchungen

und Visualisierungen (ähnlich wie bei einem Röntgenbild)

durchgeführt werden.

KTG INSIDE

Wie in jedem Jahr lud die Junge Generation innerhalb

der KTG auch 2018 junge Nachwuchswissenschaftler,

Studenten und interessierte Mitarbeiter von Unternehmen

aus der Kerntechnik ein, um ihnen die Möglichkeit zu

geben, interessante Vorträge zu verschiedensten Themen

zu hören und an Führungen durch unterschiedlichste

Einrichtungen teilzunehmen.

Das vielseitige Programm der diesjährigen Nachwuchstagung

ermöglichte den Teilnehmern in diesem Jahr einen

breiten Überblick über die Anwendung von Strahlung von

der Kerntechnik über die Fusion bis hin zur Medizin.

Eröffnet wurde die Tagung durch Vorträge zu den

Forschungsreaktoren FRM (alt) und II in Garching sowie

zu den Aufgaben einer Behörde im Strahlenschutz.

Die Vorträge wurden mit der einmaligen Möglichkeit

kombiniert, nacheinander beide Forschungsanlagen zu

besichtigen. Unter anderem wurden tiefe Einblicke in die

Geschichte, Bauweise und den Rückbau des Forschungsreaktors

München (FRM) in Garching bei München – auch

Zusätzlich konnte das Fusionsexperiment Asdex

Upgrade im benachbarten Max-Planck-Institut für

Plasmaphysik (IPP) besichtigt werden. Aufgrund der

Gruppengröße konnten Bereiche und Anlagenteile gezeigt

werden, die sonst bei Führungen nicht oder nur kurzzeitig

besichtigt werden.

Im Brückenschlag zur zweiten Sektion am Folgetag,

welche sich zu Beginn neuen modularen Reaktor konzepten

und deren sicherheitstechnischer Einordnung widmete,

wurde die Rechenkette der Gesellschaft für Anlagen- und

Reaktorsicherheit (GRS) gGmbH vorgestellt. Außerdem

wurde durch das Institut für Kernenergetik und Energiesysteme

der Universität Stuttgart ein neues Sicherheitssystem

zur Wärmeabfuhr im Sicherheitsbehälter von Kernkraftwerken

präsentiert. Geschlossen wurde diese Sektion

vom Karlsruher Institut für Technologie (KIT) mit der

Darstellung des aktuellen Stands der Fusionsforschung.

In der abschließenden dritten Sektion standen die

Strahlentherapie und deren aktuellen Anwendungen im

KTG Inside


atw Vol. 63 (2018) | Issue 11/12 ı November/December

KTG INSIDE

614

KTG Inside

Verantwortlich

für den Inhalt:

Die Autoren.

Lektorat:

Natalija Cobanov,

Kerntechnische

Gesellschaft e. V.

(KTG)

Robert-Koch-Platz 4

10115 Berlin

T: +49 30 498555-50

F: +49 30 498555-51

E-Mail:

natalija.cobanov@

ktg.org

www.ktg.org

Vordergrund. Einleitend bildeten zwei Vorträge zur grundlegenden

Sicherheitstechnik im Strahlenschutz und den

Nebeneffekten von Neutronen in der Strahlentherapie den

Fokus. Der dritte Vortrag der Sektion widmete sich der

Anwendung von Strahlung am Menschen und einem

abschließenden Rundgang durch das Rinecker Protonentherapie

Center (RPTC).

Hierbei hatten die Teilnehmer die Möglichkeit, eine

der größten Protonentherapieanlagen zu besichtigen, die

derzeit in der Krebstherapie eingesetzt wird. Unter

anderem durften die Behandlungs- und vor allem die

gigantischen Technikräume mit den Gantrys besichtigt

und in Aktion erlebt werden. Bei den Gantrys handelt es

sich um 150 Tonnen schwere, um die Horizontalachse

360° drehbare tonnenförmige Stahlkonstruktionen von elf

Metern Durchmesser, die starke Magnete zur genauen

Ausrichtung des Protonenstrahls enthalten. Innerhalb

dieses Hohlkörpers wird der Patient auf einer Konturmatratze,

die einer Liege aus Kohlefaser aufliegt, fixiert.

Unser Dank gilt den Referenten, dem Team vom IPP in

Garching, des FRM (alt) und FRM-II, der GRS gGmbH

sowie dem RPTC für die interessanten Beiträge und die

Unterstützung!

Florian Gremme und Thomas Romming

JUNGE GENERATION

| | Editorial Advisory Board

Frank Apel

Erik Baumann

Dr. Maarten Becker

Dr. Erwin Fischer

Carsten George

Eckehard Göring

Florian Gremme

Dr. Ralf Güldner

Carsten Haferkamp

Dr. Petra-Britt Hoffmann

Christian Jurianz

Dr. Guido Knott

Prof. Dr. Marco K. Koch

Dr. Willibald Kohlpaintner

Ulf Kutscher

Herbert Lenz

Jan-Christian Lewitz

Andreas Loeb

Dr. Thomas Mull

Dr. Ingo Neuhaus

Dr. Joachim Ohnemus

Prof. Dr. Winfried Petry

Dr. Tatiana Salnikova

Dr. Andreas Schaffrath

Dr. Jens Schröder

Norbert Schröder

Prof. Dr. Jörg Starflinger

Prof. Dr. Bruno Thomauske

Dr. Brigitte Trolldenier

Dr. Walter Tromm

Dr. Hans-Georg Willschütz

Dr. Hannes Wimmer

Ernst Michael Züfle

Imprint

| | Editorial

Christopher Weßelmann (Editor in Chief)

Im Tal 121, 45529 Hattingen, Germany

Phone: +49 2324 4397723

Fax: +49 2324 4397724

E-mail: editorial@nucmag.com

| | Official Journal of

Kerntechnische Gesellschaft e. V. (KTG)

| | Publisher

INFORUM Verlags- und

Verwaltungsgesellschaft mbH

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-30, Fax: +49 30 498555-18

www.nucmag.com

| | General Manager

Christian Wößner, Berlin, Germany

| | Advertising and Subscription

Petra Dinter-Tumtzak

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-30, Fax: +49 30 498555-18

E-mail: petra.dinter@kernenergie.de

| | Price List for Advertisement

Valid as of 1 January 2018

Published monthly, 9 issues per year

Germany:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT and postage) 176.- €

All EU member states without VAT number:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT, excl. postage) 176.- €

EU member states with VAT number

and all other countries:

Per issues/copy (no VAT, excl. postage) 22.43 €

Annual subscription (no VAT, excl. postage) 164.49 €

| | Copyright

The journal and all papers and photos contained in it

are protected by copyright. Any use made thereof outside

the Copyright Act without the consent of the publisher,

INFORUM Verlags- und Verwaltungsgesellschaft mbH,

is prohibited. This applies to reproductions, translations,

microfilming and the input and incorporation into electronic

systems. The individual author is held responsible for the

contents of the respective paper. Please address letters and

manuscripts only to the Editorial Staff and not to individual

persons of the association´s staff. We do not assume any

responsibility for unrequested contributions.

Signed articles do not necessarily represent the views

of the editorial.

| | Layout

zi.zero Kommunikation

Berlin, Germany

Antje Zimmermann

| | Printing

inpuncto:asmuth

druck + medien gmbh

Baunscheidtstraße 11

53113 Bonn

ISSN 1431-5254

KTG Inside


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Herzlichen Glückwunsch!

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag und wünscht ihnen weiterhin alles Gute!

615

Dezember 2018

93 Jahre | 1925

10. Dr. Arthur Pilgenröther, Kleinostheim

90 Jahre | 1928

4. Jean-Claude Leny, Ville d’Avray/FR

86 Jahre | 1932

6. Prof. Dr. Günter Flach, Dresden

18. Dr. Manfred Simon, Hirschberg

13. Dr. Siegfried Hagen,

Eggenstein-Leopoldsh.

24. Dr. Josef Bugl, Mannheim

85 Jahre | 1933

10 Prof. Dr. Jürgen Vollradt,

Unna-Königsborn

25. Ing. Siegfried Freiberger, Hemhofen

84 Jahre | 1934

8. Dr. Hans Mohrhauer, Jülich

28. Dipl.-Phys. Bernhard Wigger, Ettlingen

83 Jahre | 1935

21. Dipl.-Phys. Christian-H. Weigel,

Muri/CH

23. Dipl.-Ing. Heinrich Semke,

Wileroltingen/CH

82 Jahre | 1936

7. Dipl.-Ing. Aurel Badics,

Bad Kreuznach

17. Prof. Dr.-Ing. Rolf Theenhaus, Linnich

81 Jahre | 1937

30. Dipl.-Ing. Wilhelm Weiss, Weinheim

80 Jahre | 1938

1. Dr. Gert Spannagel,

Linkenheim-Hochstetten

12. Prof. Dr. Peter Mombaur, Emmerich

79 Jahre | 1939

1. Dipl.-Ing. Georg Dumsky, Gräfelfing

6. Dipl.-Ing. Hans-Henn. Kuchenbuch,

Laboe-Brodersdorf

18. Dipl.-Ing. Hans Rasch, Berlin

27. Dr. Horst Bauer, Sigless/AT

31. Dipl.-Ing. Gerhard Güther, Detmold

78 Jahre | 1940

8. Dipl.-Ing. Wolfgang Heess,

Laudenbach

11. Rudolf de Millas, Mannheim

13. Dr. Hans Többe, Köln

16. Dipl.-Ing. Wolfgang Breyer,

Buckenhof

18. Dr. Gerd Haag, Linnich-Tetz

19. Prof. Dr. Wernt Brewitz, Wolfenbüttel

20. Dipl.-Ing. Horst Marek, St. Leon Rot

21. Dr. Jürgen Wehmeier, Springe

21. Obering. Klaus Vollenbruch, Erlangen

77 Jahre | 1941

13. Dipl.-Ing. Klaus-Dieter Hnilica,

Rodenbach/Hanau

76 Jahre | 1942

6. Prof. Dr. Helmuth Böck, Wien/AT

8. Dr. Dieter Herrmann, Brandis

8. Karl Georg Weber, Neckarwestheim

14. Günter Breiling, Weinheim

15. Alban Dietrich, Neckartenzlingen

29. Dr. Dankwart Struwe, Karlsruhe

75 Jahre | 1943

7. Norbert Bauer, Limburgerhof

70 Jahre | 1948

4. Dr. Alfred Sahm, Ludwigshafen

10. Dr. Jürgen Götz, Dresden

17. Christoph Barthe, Hamburg

17. Dr. Manfred Klimm, Köln

19. Dipl.-Phys. Werner Kaspari, Berlin

29. Peter Hirt, Gontenschwil/CH

60 Jahre | 1958

8. Gerhard Hackel, Günzburg

16. Joachim Ferdyn

50 Jahre | 1968

3. Dipl.-Ing. Stefan Lobin, Dortmund

30. Dr. Beate Bletz, Haßloch

Januar 2019

92 Jahre | 1927

1. Prof. Dr. Werner Oldekop,

Braunschweig

90 Jahre | 1929

20. Dr. Devana Lavrencic-Cannata, Rom/IT

89 Jahre | 1930

10. Dipl.-Ing. Hans-Peter Schmidt,

Weinheim

87 Jahre | 1932

3. Dipl.-Ing. Fritz Kohlhaas, Kahl/Main

86 Jahre | 1933

9. Prof. Dr. Hellmut Wagner, Karlsruhe

84 Jahre | 1935

10. Dipl.-Ing. Walter Diefenbacher,

Karlsruhe

17. Dipl.-Ing. Helge Dyroff, Alzenau

24. Theodor Himmel, Bad Honnef

83 Jahre | 1936

5. Obering. Peter Vetterlein, Oberursel

23. Prof. Dr. Hartmut Schmoock,

Norderstedt

30. Dipl.-Phys. Wolfgang Borkowetz,

Rüsselsheim

30. Dipl.-Ing. Friedrich Morgenstern,

Essen,

82 Jahre | 1937

7. Dipl.-Ing. Albrecht Müller,

Niederrodenbach

9. Dipl.-Ing. Werner Rossbach,

Bergisch Gladbach

25. Dipl.-Ing. (FH) Heinz Wolf,

Philippsburg

81 Jahre | 1938

7. Dipl.-Ing. Manfred Schirra, Stutensee

10. Dr. Dieter Türck, Dieburg

12. Dipl.-Ing. Hans Dieter Adami, Rösrath

18. Dr. Werner Katscher, Jülich

22. Dr. Franz Müller, Erlangen

80 Jahre | 1939

11. Dipl.-Ing. Gerwin H. Rasche, Hasloch

13. Dr. Udo Wehmann, Hildesheim

16. Dr. Wolfgang Kersting, Blieskastel

21. Prof. Dr. Detlef Filges, Langerwehe

28. Dr. Sigwart Hiller, Lauf

79 Jahre | 1940

4. Dipl.-Ing. Wolfgang Schemenau,

Laudenbach

78 Jahre | 1941

3. Dipl.-Ing. Ferdinand Wind

12 Dr. Hans-Gerb. Bogensberger,

Anthem/USA

15. Dipl.-Ing. Ulf Rösser,

Heiligkreuzsteinach

26. Dr. Heinrich Pierer von Esch, Erlangen

77 Jahre | 1942

6. Dipl.-Ing. Günter Höfer, Mainhausen

31. Dipl.-Phys. Werner Scholtyssek,

Stutensee

76 Jahre | 1943

19. Dr. Gerd Habedank,

Seeheim-Jugenheim

24. Dr. Günter Bäro, Weinheim

75 Jahre | 1944

4. Dipl.-Ing. Norbert Manderla, Köln

15. Dietmar Jorde, Zirndorf

21. Dr. Bodo Kalthoff, Waldbüttelbrunn

70 Jahre | 1949

6. Josef Heinrich Platzköster, Bottrop

6. Dr. Wolfgang Steinwarz, Grefrath

10. Asmus Hansen, Duisburg

20. Dr. Hans-Uwe Siebert, Lingen/Ems

65 Jahre | 1954

11. Angelika Debnar, Hamburg

17. Hartmut Schulze, Greifswald

23. Dr. Henrique Austregesilo, Freising,

24. Dr. Wolfgang Lippmann, Dresden

Wenn Sie keine

Erwähnung Ihres

Geburtstages in

der atw wünschen,

teilen Sie dies bitte

rechtzeitig der KTG-

Geschäftsstelle mit.

KTG INSIDE

KTG Inside


atw Vol. 63 (2018) | Issue 11/12 ı November/December

616

27. Dr. Christoph Lierse, Garching

27. Norbert Lügger, Adelsdorf

28. Dr. Ingeborg Hagenlocher, Ittlingen

60 Jahre | 1959

20. Werner Mannsdörfer, Eberdingen

50 Jahre | 1969

9. Dr. Markus Nie, Bubenreuth

16. Peter Juretzka, Stade

16. Dr. Jens Schröder, Pulheim

24. Harry Weirich, Bexbach

31. Ulrich Sander, Brackenheim

NEWS

Top

To fight climate change,

environmentalists say yes

to nuclear power

(nei) The Boston Globe highlighted a

recent report by the Union of Concerned

Scientists (UCS) stressing

nuclear energy’s role in reducing

carbon emissions. In the editorial, the

Globe noted that the urgency of protecting

the climate swayed UCS to

support conditional measures to preserve

nuclear plants, which supply

nearly 20 percent of U.S. electricity

and more than 56 percent of the

nation’s clean energy.

In the report, the group outlined a

hard truth about the future. With

climate change accelerating, as a

new U.N. report underscored, the

time to be fussy about how to reduce

emissions has passed.

What’s New? A really big deal in

the energy and environment D.C.

scene. The Union of Concerned

Scientists (UCS) released a report

today acknowledging the impact that

nuclear plant closures have on climate

and air quality, and in it the organization

advocated for policies such as

those adopted in states like Illinois,

New York, Connecticut and New

Jersey in recent years to preserve well

run, financially challenged nuclear

plants. The report explicitly recognizes

the need for nuclear power to

play a substantial role in decarbonization

efforts.

Fast Facts

• Out of the 21 nuclear plants (16.3

GW) UCS identifies as “at-risk”, 5

have already announced retirement.

They note that this involves

17 states where there are at-risk

plants that likely will need some

sort of policy to save them, and the

at-risk retirements could go from

16.3 GW to 28.7 GW with lower

natural gas prices.

• The report offers three key policy

prescriptions for preserving at-risk

plants: (1) a carbon tax; (2) a clean

energy standard; and (3) a set

of principles for state-based zero

emission credit (ZEC) programs in

the states.

UCS’ commitment to nuclear safety

is unwavering in this report. Policy

remedies it advocates must be limited

to plants operating at the highest

levels of safety.

Why it Matters: This is a big deal for

UCS and the climate community. Prior

to this report, UCS had remained silent

on any climate impacts asso ciated with

nuclear plant closures. With this report

UCS recognizes the utility of a clean

energy standard, as opposed to merely

a renewable portfolio standard, and

advocates that well-run nuclear plants

receive credit for their low- emissions

benefits through federal low-carbon

policies or through state-based, ZEC

style of programs that are already

being deployed to help save plants.

What NEI’s President and CEO

Maria Korsnick has to say about this

report: “This is a forward leaning

moment for an organization of significant

influence in America’s climate

and science community. There is

increasing consensus across broad

cross- sections of American political,

environmental, security and energy

experts that nuclear energy is critical

to resilient, reliable and clean power.

This UCS report is explicit in recognizing

the scale of contributions

nuclear power makes to mitigate

against carbon and pollutants. It adds

significantly to increasing momentum

for recognizing the role nuclear plays

in America’s clean energy future.

“Enacting technology-neutral policies

and establishing programs that

credit nuclear for its 24/7, clean and

reliable attributes will ensure the

viability and economic success of

America’s largest source of clean

energy. Industry experts have long

warned of the severe consequences

that plant closures would have on the

environment. We join UCS in urging

policymakers to take actions that will

preserve the nuclear fleet and open

doors for new nuclear construction

and innovation in nuclear technology.”

The Big Picture: This report joins a

notably growing chorus of key voices

sounding the alarm that the loss of

nuclear energy would make it far more

challenging to constrain carbon emissions

and protect our environment.

| | www.nei.org

World

Atomic Society calls for

action on future of nuclear

research in Europe

(nucnet) Europe risks losing much of

its nuclear research capacity because

of a “crisis in political vision” on

energy issues and limited public

funds, the European Atomic Energy

Society says in a position paper

published today.

The paper says investment is

needed to enable advanced nuclear

research and a renewed programme

of public engagement is needed to

allow a more balanced view of

Europe’s future energy mix, particularly

considering the need for

decarbonisation.

It says the successful development

of new nuclear technologies can only

be achieved by research laboratories

with appropriate infrastructure and

with cooperation and support by

the industry. This requires “stable

and dedicated funding programmes

from national, European and private

sources”.

This, in turn, needs a change of

political attitudes towards nuclear,

focusing on the long-term societal

benefits of a low-carbon, energy

dense, stable baseload technology

that is complementary to renewable

technologies.

According to the EAES, the investments

needed would be considerably

smaller than subsidies supporting

the deployment and commissioning

of renewable technologies.

The paper says that with limited

public funds available both nationally

and in Europe, research

institutions are increasingly relying on

industrial support. This support,

however, is decreasing, and in such

a political environment, utilities

prefer to invest in extending nuclear

reactor lifetimes, rather than investing

in new-build.

“Vendors are finding it difficult to

invest in new nuclear technologies

and are relying on proven designs

and plants. This is resulting in a lack of

innovation and poor public perception,

despite an exemplary safety

record,” the paper says.

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

It says the gradual loss of nuclear

skills within Europe is well documented,

with an ageing workforce

and challenges in attracting the best

graduates into the industry.

“This will result in a lack of competitiveness

with respect to other

nuclear players in the world and a lack

of understanding of our nuclear

legacy.”

There are instruments available

to stimulate nuclear research in

Europe, with nuclear energy listed as

a supported technology within the

European Strategic Energy Technology

Plan (SET-Plan). The Horizon

2020 framework programme has

funds dedicated to activities related to

the Euratom Treaty.

However, Euratom funds are

only sufficient to maintain a modest

R&D programme in selected areas.

Moreover, there is a risk that these

funds will have little impact if they

are not appropriately supported

by a clear policy at member state

level, the paper says.

US: Cost of nuclear generation

reaches nearly 10-year low

(nei) A new Nuclear Energy Institute

study shows that the nuclear industry

has reduced its total generating

costs by 19 percent since their peak in

2012. These reductions in cost are so

dramatic that 2017 total generating

costs of $33.50 per megawatt-hour

(MWh) have gone down to almost

what they were nearly 10 years ago in

2008 ($32.75 per MWh).

“Through the Delivering the

Nuclear Promise campaign and other

initiatives, Operations the hardworking men and

women of the nuclear industry have

done an amazing job reducing costs

wherever they find them,” NEI Vice

have remained flat compared to the past decade.

President of Policy Development and

Public Affairs John Kotek said. “As we

continue to face economic headwinds

in markets which do not properly

compensate nuclear plants, the

industry has been doing its part to

reduce costs to remain com petitive.”

“Some things are in urgent need of

change if we are to keep the nation’s

nuclear plants running and enjoy

their contribution to a reliable,

resilient and low-carbon grid. Namely,

we need to put in place market

reforms that fairly compensate

nuclear similar to those already in

place in New York, Illinois and

other states.”

Other findings of the Nuclear Costs

in Context study include:

• The average total generating costs

for nuclear in 2017 of $33.50 per

MWh, represents a 3.3 percent

reduction from 2016.

• The 19 percent reduction in costs

since 2012 includes a 41 percent

reduction in capital expenditures,

a 17 percent reduction in fuel

costs, and a 9 percent reduction

in operating costs.

The report warns that despite these

reduced prices, several nuclear power

plants have been closed in recent

years because of economic pressures.

Since 2013, seven nuclear reactors

(Crystal River 3 in Florida, San Onofre

2 and 3 in California, Kewaunee in

Wisconsin, Vermont Yankee, Fort

Calhoun in Nebraska, and Oyster

Creek in New Jersey) have shut

down permanently. Another 12

reactors have announced their

permanent shutdown. If all these

closures are taken together, they

represent a massive loss of carbonfree

electricity generation for the

country: 55.5 million tons of carbon

dioxide (CO 2 ) avoided annually. That

is the equivalent of the carbon emissions

avoided by approximately

14,000 wind turbines per year or

the electricity used by 8 million

homes per year.

Operations costs increased over the last twelve years from $19.25 per MWh in 2002 to $20.43 per MWh

in 2017. Operations costs have declined 9.8 percent from the peak in 2011.

This increase in operations costs was not driven by any single category. Operations costs in the 2002-2008

period are similar to where money was being spent in the 2009-2017 period. However, operations costs

The chart below breaks down operations spending over the last 11 years.

$ Billions (in 2017 dollars)

20

18

16

14

12

10

8

6

4

2

0

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Work Management (WM)

Training (TR)

Support Services (SS)

Nuclear Industry Operations Cost, 2006-2017

Operations (OP)

Fuel Management (NF)

Materials and Services (MS)

| | US: Cost of nuclear generation reaches nearly 10-year low (NEI).

Loss Prevention (LP)

Engineering (ENG)

Source: Electric Utility Cost Group

The report cites various factors as

contributing to premature closure of

these plants including:

• sustained low natural gas prices,

which suppress prices in power

markets

• relatively low growth in electricity

demand

• federal and state mandates for

renewable generation which suppress

prices, particularly during

off-peak hours when wind generation

is highest and the electricity is

needed the least

• market designs that do not

compensate nuclear plants for the

value they provide to the grid.

Certain states have implemented

plans that recognize and place a value

on nuclear’s contributions. New York,

Illinois, New Jersey and Connecticut

have enacted policies that will

compensate nuclear plants for their

environmental attributes, ensuring

that a total of 12 reactors in these

states will not be forced to shut down

prematurely.

Closed nuclear plants are often

replaced with natural gas power

plants which produce substantial

amounts of CO 2 and come with a

bigger price tag than existing nuclear

plants. According to the U.S. Energy

Information Administration, new

natural gas-fired plants come with a

levelized cost of $48 per MWh compared

to existing nuclear’s cost of

$33.50 per MWh.

Cost information in the study was

collected by the Electric Utility Cost

Group with prior years converted to

2017 dollars for accurate historical

comparison.

| | www.nei.org

IAEA showcases global

coordination on Small,

Medium Sized or Modular

Nuclear Reactors (SMRs)

(iaea) The International Atomic

Energy Agency’s (IAEA) expanding

international coordination on the

safe and secure development and

deployment of small, medium sized or

modular nuclear reactors (SMRs) has

come into focus with new publications

and expert meetings on these emerging

technologies.

Significant advances have been

made in recent years on SMRs, some

of which will use pre-fabricated

systems and components to shorten

construction schedules and offer

greater flexibility and affordability

than traditional nuclear power plants.

Some 50 SMR concepts are at various

stages of development around the

617

NEWS

Fuel

Fuel costs represent approximately 20 percent of the total generating cost. Fuel costs experienced a

relatively rapid increase from 2009 to 2013. This was largely the result of an escalation in uranium prices,

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Operating Results July 2018

618

NEWS

Plant name Country Nominal

capacity

Type

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated. gross

[MWh]

Month Year Since

commissioning

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Month Year Month Year

OL1 Olkiluoto BWR FI 910 880 716 636 758 3 676 095 258 330 281 96.22 80.22 93.88 78.84 94.05 79.41

OL2 Olkiluoto BWR FI 910 880 687 606 170 4 258 260 248 557 441 92.34 92.13 90.12 91.04 88.56 90.99

KCB Borssele PWR NL 512 484 744 368 003 2 171 801 160 378 720 99.91 84.46 99.91 83.93 96.58 83.53

KKB 1 Beznau 7) PWR CH 380 365 744 276 474 1 217 418 125 963 505 100.00 63.38 100.00 63.12 97.71 62.90

KKB 2 Beznau 1,7) PWR CH 380 365 538 194 981 1 811 079 132 975 952 72.31 93.81 71.03 93.59 68.56 93.61

KKG Gösgen 7) PWR CH 1060 1010 744 773 627 4 802 648 309 997 235 100.00 89.85 99.99 89.29 98.10 89.07

KKM Mühleberg BWR CH 390 373 744 269 800 1 930 260 126 268 405 100.00 99.63 99.97 99.32 92.98 97.29

CNT-I Trillo PWR ES 1066 1003 744 785 052 4 375 007 243 399 431 100.00 81.93 100.00 81.51 98.13 80.22

Dukovany B1 1,2) PWR CZ 500 473 652 305 764 1 866 343 110 496 825 87.63 74.41 84.40 73.71 82.20 73.38

Dukovany B2 PWR CZ 500 473 744 360 276 1 807 746 106 430 284 100.00 72.46 99.74 71.69 96.85 71.07

Dukovany B3 PWR CZ 500 473 744 357 268 2 378 998 105 001 425 100.00 95.48 99.45 95.12 96.04 93.53

Dukovany B4 PWR CZ 500 473 530 254 145 2 293 598 105 565 339 71.24 91.39 70.34 90.97 68.32 90.17

Temelin B1 PWR CZ 1080 1030 744 796 140 3 916 116 110 397 410 100.00 71.73 99.66 71.41 98.90 71.20

Temelin B2 2) PWR CZ 1080 1030 0 0 4 661 537 106 151 483 0 84.84 0 84.81 0 84.85

Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 53.08 0 53.05 0 53.23

Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 66.85 0 66.64 0 66.97

Doel 3 2) PWR BE 1056 1006 154 116 819 116 819 251 286 041 20.73 3.03 14.55 2.13 14.55 2.13

Doel 4 PWR BE 1084 1033 744 798 104 5 492 676 260 038 518 100.00 99.25 100.00 99.07 97.78 98.57

Tihange 1 PWR BE 1009 962 744 717 709 5 101 230 295 940 106 100.00 99.66 98.87 99.36 95.54 99.64

Tihange 2 PWR BE 1055 1008 691 684 179 5 271 687 254 221 225 92.89 98.96 88.55 97.98 87.39 98.78

Tihange 3 2) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 42.02 0 41.97 0 42.07

Operating Results July 2018

Plant name

Type

Nominal

capacity

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Since Month Year Month Year Month Year

commissioning

KBR Brokdorf DWR 1480 1410 744 1 002 201 5 663 244 345 855 303 100.00 83.92 94.23 79.45 90.59 74.91

KKE Emsland 4) DWR 1406 1335 744 1 028 789 6 385 489 341 708 772 100.00 91.02 99.72 90.83 98.35 89.27

KWG Grohnde DWR 1430 1360 740 988 782 5 972 523 372 600 102 99.40 87.63 98.55 85.57 92.24 81.56

KRB C Gundremmingen SWR 1344 1288 744 976 015 5 472 761 326 052 654 100.00 83.48 99.40 82.81 97.11 79.58

KKI-2 Isar 1,2,4) DWR 1485 1410 365 484 346 6 813 318 348 411 641 49.04 92.55 46.73 92.20 43.52 89.89

KKP-2 Philippsburg DWR 1468 1402 744 1 038 977 5 948 826 361 116 342 100.00 84.03 100.00 83.87 93.58 78.36

GKN-II Neckarwestheim DWR 1400 1310 744 996 350 6 957 650 327 080 784 100.00 100.00 98.04 99.61 95.74 97.91

| | IAEA showcases global coordination on Small, Medium Sized or Modular

Nuclear Reactors (SMRs).

world, with commercial operations

expected to begin in the coming years.

Following an IAEA meeting in

September on SMR design and technology,

energy experts from around

Europe gathered at the Agency’s

Vienna headquarters for a workshop

earlier this month to discuss infrastructure,

economic and finance

aspects of SMRs. The meetings are

part of an ongoing SMR project

involving the IAEA Departments of

Nuclear Energy, Nuclear Safety and

Security and Technical Cooperation.

In addition, representatives of regulatory

authorities and other stakeholders

also met this month at the

IAEA’s SMR Regulators’ Forum, which

exchanges experiences on SMR regulatory

reviews.

“Many IAEA Member States are

interested in the development and

deployment of SMRs as a cleaner

alternative to fossil fuels and for

reducing greenhouse gas emissions,”

said IAEA Deputy Director General

Mikhail Chudakov, Head of the

Department of Nuclear Energy. “The

IAEA’s flurry of recent activities on

SMRs is part of our efforts to respond

to Member State requests for assistance

on this exciting emerging technology.”

The IAEA recently released two

new publications on SMRs: Deployment

Indicators for Small Modular

Reactors, which provides Member

States with a methodology for evaluating

the potential deployment of

SMRs in their national energy

systems; and an updated edition of

Advances in Small Modular Reactor

Technology Developments, which

provides a concise overview of the

latest status of SMR designs around

the world and is intended as a

supplement to the IAEA’s Advanced

Reactor Information System (ARIS).

SMRs have the potential to meet

the needs of a wide range of users and

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Operating Results August 2018

Plant name Country Nominal

capacity

Type

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated. gross

[MWh]

Month Year Since

commissioning

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Month Year Month Year

OL1 Olkiluoto BWR FI 910 880 744 669 103 4 345 198 258 999 384 100.00 82.75 99.92 81.53 98.83 81.89

OL2 Olkiluoto BWR FI 910 880 744 666 612 4 924 872 249 224 053 100.00 93.13 100.00 92.19 97.39 91.80

KCB Borssele 3) PWR NL 512 484 87 42 413 2 214 214 160 421 133 12.04 75.22 12.02 74.76 11.13 74.29

KKB 1 Beznau 7) PWR CH 380 365 744 252 974 1 470 392 126 216 479 100.00 68.05 96.15 67.33 89.13 66.25

KKB 2 Beznau 1,7) PWR CH 380 365 744 262 373 2 073 452 133 238 325 100.00 94.60 100.00 94.40 92.51 93.47

KKG Gösgen 7) PWR CH 1060 1010 744 772 515 5 575 163 310 769 750 100.00 91.14 99.94 90.65 97.96 90.20

KKM Mühleberg 1,2) BWR CH 390 373 432 139 480 2 069 740 126 407 885 58.07 94.32 56.45 93.85 48.07 91.01

CNT-I Trillo PWR ES 1066 1003 744 785 558 5 160 565 244 184 989 100.00 84.24 100.00 83.87 98.22 82.51

Dukovany B1 PWR CZ 500 473 744 359 880 2 226 223 110 856 705 100.00 77.67 100.00 77.06 96.74 76.36

Dukovany B2 PWR CZ 500 473 744 358 886 2 166 632 106 789 170 100.00 75.97 100.00 75.30 96.48 74.31

Dukovany B3 PWR CZ 500 473 744 355 026 2 734 024 105 356 451 100.00 96.06 99.98 95.74 95.44 93.78

Dukovany B4 PWR CZ 500 473 738 356 094 2 649 692 105 921 433 99.19 92.39 98.67 91.96 95.72 90.88

Temelin B1 PWR CZ 1080 1030 744 797 599 4 713 715 111 195 009 100.00 75.34 99.67 75.02 99.08 74.76

Temelin B2 2) PWR CZ 1080 1030 47 36 816 4 698 353 106 188 299 6.32 74.82 6.32 74.79 4.58 74.61

Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 46.31 0 46.28 0 46.44

Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 58.32 0 58.14 0 58.43

Doel 3 3) PWR BE 1056 1006 668 697 467 814 287 251 983 508 89.79 14.10 88.55 13.15 88.35 13.13

Doel 4 2) PWR BE 1084 1033 138 146 133 5 638 809 260 184 650 18.53 88.95 18.38 88.78 17.88 88.27

Tihange 1 PWR BE 1009 962 744 728 677 5 829 907 296 668 783 100.00 99.70 99.97 99.44 97.06 99.31

Tihange 2 2) PWR BE 1055 1008 426 430 706 5 702 393 254 651 930 57.29 93.64 56.16 92.64 55.07 93.20

Tihange 3 3) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 36.66 0 36.62 0 36.70

619

NEWS

Operating Results August 2018

Plant name

Type

Nominal

capacity

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Time availability

[%]

Energy availability

[%] *) Energy utilisation

[%] *)

Month Year Since Month Year Month Year Month Year

commissioning

KBR Brokdorf DWR 1480 1410 739 954 469 6 617 713 346 809 772 99.30 85.88 92.74 81.15 86.10 76.34

KKE Emsland DWR 1406 1335 744 1 032 112 7 417 601 342 740 884 100.00 92.16 100.00 92.00 98.62 90.47

KWG Grohnde DWR 1430 1360 744 1 004 431 6 976 954 373 604 533 100.00 89.21 100.00 87.41 93.68 83.11

KRB C Gundremmingen SWR 1344 1288 744 977 634 6 450 395 327 030 288 100.00 85.59 100.00 85.00 97.24 81.83

KKI-2 Isar DWR 1485 1410 726 1 036 464 7 849 782 349 448 105 97.55 93.19 97.30 92.85 93.38 90.33

KKP-2 Philippsburg DWR 1468 1402 735.75 943 960 6 892 786 362 060 302 98.89 85.92 98.32 85.71 84.51 79.15

GKN-II Neckarwestheim 2) DWR 1400 1310 740 957 150 7 914 800 328 037 934 99.42 99.93 99.32 99.57 91.80 97.13

to be low carbon replacements for

ageing fossil fuel fired power plants.

They display enhanced safety features

and are suitable for non-electric applications,

such as cooling, heating and

water desalination. SMRs also offer

options for countries with smaller

electricity grids as well as regions with

less developed infrastructure and for

energy systems that combine nuclear

and alternative sources, including

renewables.

SMRs require less upfront capital

per unit, but their electricity generating

cost will probably be higher than

that of large reactors. Their costs will

be weighed against alternatives and

competitiveness will need to be pursued

through economies of scale. An

expeditious deployment of SMRs will

involve the development of a resilient

supply chain, human resources and a

robust regulatory framework.

“There are safety and security

considerations that have to be taken

into account at all stages of the

development and implementation of

SMR projects,” IAEA Deputy Director

General Juan Carlos Lentijo, Head of

the Department of Safety and Security.

“The IAEA safety standards and

security guidance provide a framework

that can support in this regard.”

| | www.iaea.org

ENSREG approves first peer

review report on ageing

management

(nucnet) The European Nuclear Safety

Regulators Group (ENSREG) has

approved the first topical peer review

report on ageing management of

nuclear power plants and research

reactors.

The peer review concluded that

there are “no major deficiencies”

in European approaches to ageing

management. However, it identified

areas where further work would

improve ageing management.

The review concluded that

ageing management programmes

for research reactors are not

regulated or implemented as systematically

and comprehensively as for

commercial nuclear plants. This

may be justified by the variety of

research reactor designs and their

potentially lower risk significance

compared to commercial plants, but

further attention is needed from both

regulators and licensees the review

said.

*)

Net-based values

(Czech and Swiss

nuclear power

plants gross-based)

1)

Refueling

2)

Inspection

3)

Repair

4)

Stretch-out-operation

5)

Stretch-in-operation

6)

Hereof traction supply

7)

Incl. steam supply

8)

New nominal

capacity since

January 2016

9)

Data for the Leibstadt

(CH) NPP will

be published in a

further issue of atw

BWR: Boiling

Water Reactor

PWR: Pressurised

Water Reactor

Source: VGB

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

620

NEWS

The review was carried out in 16

EU member states and three non-EU

member states – Norway, Switzerland

and Ukraine – with commercial

nuclear power plants or research

reactors.

The peer review process will

continue with national action plans,

to be produced by September 2019,

that address the peer review results,

Ensreg said.

The review was the first in a series

of peer reviews into nuclear safety in

Europe that will take place every six

years, in accordance with the EU’s

revised nuclear safety directive.

Ensreg said it was largely inspired

by stress tests carried out after

the March 2011 accident at the

Fukushima- Daiichi nuclear power

station in Japan.

The review process was developed

by Ensreg, an independent, expert

advisory group with members from

all EU countries.

A public meeting will be held in

Brussels on 22 November to present

the results of the review.

The peer review report is online:

https://bit.ly/2JpUTWi

| | www.ensreg.eu

IAEA launches international

training course on protecting

nuclear facilities from

cyber-attacks

(iaea) The International Atomic

Energy Agency (IAEA) has introduced

a new international training course

(ITC) on protecting nuclear facilities

from cyber-attacks, highlighting the

Agency’s role in supporting national

efforts to strengthen nuclear security.

The inaugural course, Protecting

Computer-Based Systems in Nuclear

Security Regimes, was held earlier

this month. It brought together 37

participants from 13 countries for two

weeks of immersive training on best

practices in computer security.

Developed together with the U.S.

Department of Energy’s National

Nuclear Security Administration

( NNSA) and hosted by the Idaho National

Laboratory in the United States,

it was the first in what will be a series

of IAEA information and computer

security ITCs focusing on raising

awareness of the threat posed by

cyber-attacks, and their potential

impact on nuclear facilities.

The course offered participants a

chance to test their skills on mockups

of actual state-of-the-art digital

systems common in today’s nuclear

facilities, which use digital technologies

to provide functions that

| | Dominion files to extend Surry operating license to 80 years.

support safe operations, security,

material accountancy and control,

and pro tection of sensitive information.

“Everyone with responsibility for

nuclear security must have a thorough

understanding of the vulnerabilities

of their systems – they must know

how to prevent and mitigate possible

cyber-attacks on those systems,” said

Raja Adnan, Director of the IAEA’s

Division of Nuclear Security. “The

IAEA offers a range of training courses

in computer security to help ensure

that governments and organizations

have the necessary technical, regulatory

and other tools to succeed

when faced with highly skilled

adversaries.”

In developing the course, cybersecurity

experts from the IAEA and

the Department of Energy National

Laboratories – Idaho National Laboratory,

Pacific Northwest National

Laboratory, and Los Alamos National

Laboratory – designed a learning

environment that replicated equipment

typically found in a nuclear

facility.

“The hands-on lab environment,

presentations, and exercises were

conducted in a manner that allowed

participants of varied experience to

gain the full benefit of the training,”

said James Byrne, a participant from

EDF Energy in the United Kingdom.

“It was a valuable training experience

that provided me with many cyber

security insights that will be helpful

for me when I return to work.”

| | www.iaea.org

Reactors

Dominion files to extend

Surry operating license

to 80 years

(nei) Dominion Energy’s twin-reactor

Surry Power Station will continue to

provide carbon-free electricity to

more than 400,000 homes in Virginia

through the middle of the century,

once the company’s application for

a second renewed 20-year operating

license is approved by the Nuclear

Regulatory Commission (NRC).

Dominion’s submittal, filed Tuesday,

is the third “second license renewal”

application to be sent by nuclear

utilities to the NRC this year, reflecting

the industry’s increasing interest in

sustaining the future of its reactor fleet.

“Our application to renew Surry

Power Station’s licenses for another

20-year period is good news for our

customers, the regional economy and

the environment,” said Dan Stoddard,

Dominion Energy’s Chief Nuclear

Officer in an Oct. 16 press release.

“Our customers will benefit from

continuing to receive safe, reliable,

affordable, and clean electricity

from the station through 2053.”

“Renewing the operation of Surry also

positions Virginia for economic

growth and will help the Commonwealth

remain a leader in the production

of clean energy among

other states in the mid-Atlantic and

South,” Stoddard added. “It supports

more than 900 high-paying jobs at

the station and produces additional

economic and tax benefits.”

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

All U.S. nuclear reactors are

initially licensed to operate for 40

years, with NRC regulations allowing

for licenses to be renewed for 20 years

at a time. The reactor license renewal

process is well established. It entails

a rigorous NRC review of reactor

licensees’ plans for managing all plant

structures and components for safe

long-term operations throughout the

renewal period.

The NRC agrees with the industry

that there are no technological

limitations on restricting the operating

lifetime of well-maintained nuclear

reactors. Licensees have the discretion

to decide whether to pursue extended

operations based on economic and

other considerations.

Since the first 20-year license

renewal was issued in 2000, nearly all

the 98 operating reactors in the

U.S. fleet have obtained their initial

license extensions – Surry’s was

obtained in 2003. The remaining

few reactors have applications under

review or pending submittal. Even

so, half of these reactors are expected

to reach the end of their 60-year

extended periods by 2040, and all

by 2050.

The continued operation of

America’s nuclear fleet is vital to

ensuring an adequate supply of clean,

carbon-free energy. Nuclear plants are

the largest source of carbon-free

electricity in the country. An NEI

study finds that if all operating U.S.

reactors were to run for 80 years

instead of 60, a cumulative total of

about 3.5 billion tons of CO 2 emissions

would be avoided through

2050.

The first SLR application was

submitted by Florida Power and Light

in January 2018 for its Turkey Point

Nuclear Plant in Florida, followed

by Exelon’s filing in July for Peach

Bottom Atomic Power Station in

Pennsylvania. Including the two

Surry units, there are now six reactors

in the vanguard of the SLR program,

with more to come.

“The Peach Bottom SLR application

has been an excellent example

of industry cooperation. We could

not have submitted a high quality

application without EPRI and

DOE research, and the Nuclear

Energy Institute leading the way

on inter facing with the NRC on

this process,” Exelon Vice President

for Licensing and Decommissioning

Mike Gallagher said. “We look

forward to safely and efficiently

operating Peach Bottom for many

years to come.”

The NRC has committed to completing

SLR application reviews within

an 18-month period, and is piloting

this review schedule with one of the

initial license renewal applications

under way.

The success of the program to date,

including the NRC’s expedited review

schedule, has resulted in the industry’s

increasing confidence in the process.

As shown by industry surveys

conducted in 2017 and 2018, more

than half of nuclear plant licensees

now want to pursue SLR applications

(see accompanying chart).

Among them is Dominion Energy,

which already announced its intention

to file an SLR application for

its two North Anna Power Station

units in Louisa County by 2020.

Additional announcements are expected

in 2019.

More than half of the operating

reactor fleet is anticipated to pursue

license renewals to operate for 80

years.

| | www.nei.org

Modification work results in

capacity increase at Finland’s

Loviisa reactors

(nucnet) The net capacity of both

nuclear power units at the Loviisa

nuclear power station in Finland is

now 507 MW (net) after modification

and improvement work carried out

during recent outages.

Both units have seen their net

capacity increase from the original

design net capacity as the result of

modifications and improvement work

since they began commercial operation.

According to the International

Atomic Energy Agency’s reactor

database, the units’ original design

net capacity was 420 MW.

Fortum said the most recent

outages included “the most challenging”

work in the Loviisa station’s

history, both in terms of workload and

how demanding the work was.

Unit 1 returned to commercial

operation on 18 October after an

annual outage that lasted just over

26 days. Earlier, Unit 2 returned to

service on 21 September after an

outage that lasted nearly 47 days.

Loviisa-2 underwent an extensive

outage that involved the standard

periodic inspections performed

every eight years in addition to

the plant modification and improvement

work.

Loviisa-1 underwent a shorter

refuelling outage, but modification

and improvement work waswere also

carried out, Fortum told NucNet.

Several safety improvements were

implemented for both units, including

improvements to critical safety functions,

maintenance work on the main

generators and the replacement of

generator stators.

Fortum and Rolls-Royce signed

an agreement in May 2014 for the

modernisation of the most critical

safety automation systems on both

units at Loviisa. The work done by

Rolls-Royce included the design,

licensing, installation and commissioning

of the new safety systems.

Both Loviisa units are pressurised

water reactors supplied by Russia.

Unit 1 began commercial operation

in May 1977 and Unit 2 in January

1981.

In 2017, the load factor at Loviisa

was 92.9%, among the best in the

world for PWR plants. The plant

produced a total of 8.16 TWh of

electricity, which is more than 10%

of Finland’s total electricity production.

In 2017, Fortum invested about

€ 90 m in the Loviisa nuclear station.

| | www.fortum.com

Anglesey hearings mark

beginning of six-month

Wylfa Newydd planning

examination

(nucnet) Three days of hearings have

being held as part of a six-month

formal examination of plans to build

two UK Advanced Boiling Water

Reactors at the Wylfa Newydd

nuclear power station on the isle

of Anglesey in North Wales.

The hearings began on 23 October

as part of Horizon Nuclear Power’s

development consent order application

for the station, which will

generate enough power for about

five million homes.

A five-member panel will consider

and make a recommendation on the

proposed power station to business

secretary Greg Clark.

Mr Clark will then decide whether

to grant planning permission to build

the main power station and other

off-site integral developments.

As the host local authority,

Anglesey Council said it will play a

key role in the examination process,

ensuring that the Wylfa Newydd

plans are scrutinised and challenged

to secure the best possible outcome

for the Island.

Council leader Llinos Medi said:

“The Wylfa Newydd power station

is a huge energy infrastructure

project of national significance. The

sheer scale and complexity of the

621

NEWS

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

622

NEWS

DOD and a private reactor development

company to start working on a

project next year. And keep a watch

out for the submission of microreactor

applications to the NRC

sometime before 2021.

| | www.nei.org

Company News

| | Anglesey hearings mark beginning of six-month Wylfa Newydd planning examination

application cannot be underestimated

and its examination is vital.”

A big move toward small:

Micro-reactors and the

Pentagon

(nei) What’s New? The Pentagon,

with the support of Congress, is

exploring the potential for the

deployment of micro-reactors at its

defense installations. These reactors

could run for years, independent of

the grid, to provide secure, reliable

power and sustain defense functions,

including during an extended blackout.

The Nuclear Energy Institute

has released a Roadmap on what

steps are needed for deployment.

Fast Facts

The U.S. Congress and U.S. Department

of Defense (DOD) have been

interested in the use of small reactors

for nearly a decade. Deployment of

micro-reactors for DOD could happen

in as soon as five to seven years,

replace conventional diesel generators

or coal boilers with a new source

of electricity that would operate independently

of the power grid, and run

cleanly and quietly for years, with

long intervals between re-fuelings.

DOD manages more than 500 fixed

installations and is the single largest

energy consumer in the U.S.

These reactors are quite small with

military installations likely exploring

technology in the one to 10 megawatts-electric

range. Many military

bases will need multiple microreactors.

They could desalinate water,

generate hydrogen for fuel, and power

computer installations. The main

challenges are licensing, regulatory

and business issues, not technology.

NEI’s Roadmap for Micro-Reactor

Deployment lays out the necessary

steps, describes the timeline, and

offers recommendations for facilitating

micro-reactor deployment for

the military.

NEI anticipates that the reactors

would be licensed by the Nuclear

Regulatory Commission. They would

be powered by uranium of a type

that the government already has in

inventory, although the uranium

would have to be processed into the

proper fuel form. While the focus of

the roadmap is for military use, such

reactors would also be useful in small

communities off the grid, and in

remote mining operations.

What NEI’s Marc Nichol, director

of new reactor deployment, has to say

about this technology: “Small reactors

are one of the most promising new

nuclear technologies to emerge in

decades. Energy is important to our

national security; it must be reliable

and resilient so that it’s there when

our men and women in uniform

need it. Micro-reactors can enhance

our capabilities by providing that

resilient, 24/7 energy.”

What DoD’s Troy Warshel, director

of operations at the Office of the

Deputy Assistant Secretary for

Operational Energy, has to say: “Ultimately

our goal is resilience. And

what does resilience mean for the

Department of Defense? It means for

our critical missions, when we flip the

switch – there’s power. We see nuclear

energy as a huge potential partner in

achieving our resilience goals.”

The Big Picture: The Pentagon’s

interest in the technology signals

strong confidence in nuclear energy to

meet the Pentagon’s energy resilience

goals. Through the National Defense

Authorization Act the President has

directed the Secretary of Energy to

develop a report on a pilot program

for deploying micro-reactors at

national security facilities. His signature

on the bill points to the

Administration’s confidence in the nuclear

industry to support the country’s

national security interests.

What to Look for Next: Within the

next year, the Department of Energy

will develop a report on a pilot program

for deploying micro-reactors at

national security facilities. Also, look

for a formal engagement between

Framatome and Entergy sign

contract for accident tolerant

fuel coated cladding delivery

to ANO

(framatome) Framatome signed a

contract with Entergy to deliver and

insert lead use fuel rods that utilize

chromium-coated rods into Unit 1

at Arkansas Nuclear One (ANO).

Chromium coating is a feature of

the accident tolerant fuel design

that Framatome has been developing

for several years as a part of the

Department of Energy’s (DOE)

Enhanced Accident Tolerant Fuel

(EATF) program. This work also

builds on several years of collaboration

with its European partners,

CEA and EDF in France, as well as

Goesgen Nuclear Power Plant in

Switzerland. Entergy will insert the

lead use rods in fall 2019.

“Our team has decades of

experience researching, developing

and advancing nuclear fuel technologies,”

said Bob Freeman, vice

president of Contracts and Services

for the Fuel Business Unit of

Framatome in the U.S. “Our enhanced

accident tolerant fuel design builds

on this experience and provides

operators more time to respond

in the event of an emergency, while

improving fuel performance during

normal operations.”

The addition of a chromium

coating to the fuel’s existing alloy

cladding offers advantages, including

improved resistance to oxidation at

high temperatures, reduced hydrogen

generation in accident conditions, and

increased wear and debris resistance

in normal operations.

“Maintaining operational excellence,

while safely producing lowcost,

carbon- free electricity, is at the

core of what we do at Entergy,” said

John Elnitsky, senior vice president,

Engineering and Technical Services

at Entergy Nuclear. “These chro miumcoated

rods will not only help

improve fuel reliability for our

customers but will also advance

this important technology for our

industry.”

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

Since 2014, the experienced

experts at Framatome have driven

the company’s program, building on

the collective knowledge, skills and

expertise of nuclear professionals

from utilities, U.S. and French Institute

national labs, universities and

industry organizations around the

world. Support from DOE has allowed

Framatome to significantly beat its

initial target of 2023 to deploy this

technology, further protecting and

advancing nuclear power.

| | www.framatome.com

US: Framatome signs contract

to deliver ATRIUM 11 fuel to

Talen Energy’s Susquehanna

Station

(framatome) Framatome signed a

contract with Talen Energy’s

Susquehanna Nuclear, LLC, to supply

its advanced ATRIUM 11 fuel

design. The company will deliver the

first of six fuel reloads – consisting of

approximately 300 fuel assemblies –

in January 2021 to the site located

in Berwick, Pennsylvania.

Framatome has supplied Susquehanna

Nuclear with fuel for every

reload since 1983 under a series of

competitively awarded contracts. To

date, Framatome has delivered more

than 10,500 fuel assemblies to

Susquehanna and supported Talen

Energy in reducing generating costs

through new, more efficient fuel

designs, shifting operations to longer

cycles and increasing plant output

to 120 percent of the initial rated

power.

“Our team at Framatome brings

together the highest level of expertise

and experience to deliver exceptional

performance for our customers,” said

Lionel Gaiffe, senior executive vice

president in charge of the Fuel

Business Unit of Framatome. “Our

new ATRIUM 11 product helps

Boiling Water Reactor (BWR) facilities

meet and adapt to technically

demanding operating requirements

so that they may continue to safely

and reliably generate electricity.”

ATRIUM 11 is Framatome’s latest

BWR fuel, featuring an 11x11 rod

array, which offers increased safety

and fuel cycle savings. The unique

geometry of ATRIUM 11 inherently

increases the amount of energy

extracted from the fuel while reducing

the power demand on individual

fuel rods. As a result, customers can

buy less uranium to meet cycle energy

targets and increase power maneuvering

agility to adapt to an evolving

regional generation mix. A number

of innovative protective features also

help ensure failure-free operation

over the life of the fuel.

Framatome’s fuel fabrication

facility in Richland, Washington,

which has been in operation for nearly

50 years, will manufacture the fuel

assemblies that Susquehanna will use.

The company also manufactures

ATRIUM 11 in Lingen, Germany.

Susquehanna Nuclear is the

second customer to choose ATRIUM

11 fuel in the U.S., and the design is

currently operating in five reactors

around the world. Two reactors in

Europe received reload batches of

ATRIUM 11 in early 2018.

With a combined output of

2,600 MW-electric, the dual-unit

Susquehanna site sits on 2,100 acres

and is one of the largest nuclear

generation facilities in the United

States. Its two BWRs, which came

into commercial operation in 1984

and 1985, respectively, produce

enough power to meet the needs of

approximately two million homes.

The plant provides jobs for nearly

1,000 full-time employees.

| | www.framatome.com

Orano and the CEA provide

demonstration of an innovative

waste vitrification

technology for Fukushima

nuclear site

Vitrification proven technology may

be part of the solution for waste

treatment on the Fukushima nuclear

site. Since April 27th 2018, ANADEC,

the CEA and Orano are working

on a project to evaluate the compatibility

of the In-can vitrification

process developed by the CEA, to

treat nuclear waste from Fukushima

Daiichi water treatment, such as

sludge and mineral adsorbents.

This project is divided in two main

parts:

• Durable waste form conditioning

matrix formulations and studies,

laboratory scale (100 gr), bench

scale (1kg) and near-industrial

scale (100 kg) tests are led in

France at the CEA Marcoule laboratories

and technological platforms,

• Feasibility studies for process

implementation, operation and

maintenance principles and waste

disposal are led by Orano teams.

Laboratory tests and part of bench

scale tests have already been performed

with success and nearindustrial

scale tests are under way.

Feasibility studies will follow, in

order to deliver complete results

before end march 2019.

In this project, technical and

commercial interfaces in Japan are

ensured by ANADEC, a joint venture

between Orano and ATOX, a Japanese

company specialized in nuclear

services and maintenance.

The CEA and Orano have developed

vitrification processes and

operated industrial vitrification

facilities in France and abroad for

more than 40 years, with rare

expertise on formulation and longterm

behavior of glasses for encapsulation

of nuclear waste.

| | orano.group

First Westinghouse AP1000

plant sanmen 1 begins

commercial operation

(westinghouse) Westinghouse Electric

Company and its customers, China

State Nuclear Power Technology

Corporation (SNPTC) and CNNC

Sanmen Nuclear Power Company

Limited (SMNPC) announced today

that the world’s first AP1000 plant

located in Sanmen, Zhejiang Province,

China, is fully operational.

“Many years have been dedicated

to successfully bringing the first

AP1000 unit to life,” said José

Emeterio Gutiérrez, Westinghouse

president and chief executive officer.

He added, “Our Westinghouse design

and technology is now live and generating

safe, clean energy.”

The AP1000 plant, a Generation

III+ two-loop pressurized water

reactor (PWR), is considered the most

advanced commercially available

plant, offering an industry-leading

design. The AP1000 plant features a

passive safety design, harnessing

the laws of nature including gravity

and convection to support safe

and efficient plant performance. The

AP1000 plant is designed to safely and

automatically shut down without

operator action for up to 72 hours in

the event of a design-basis incident.

Additionally, Sanmen 1 and the

AP1000 fleet effectively incorporate

Westinghouse’s leading digital

instrumentation and controls that

enhance the reliability of plant control

and safety systems through an integrated,

plant-wide approach.

The global AP1000 fleet is comprised

of Sanmen 1 as well as five

additional nuclear power plants

progressing through construction,

testing and start-up. The projects

progressing through testing and

start-up include a second unit in

Sanmen, Zhejiang Province, and two

units in Haiyang, Shandong Province,

all in China. Additionally, there are

623

NEWS

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

624

NEWS

two units currently under construction

at the Alvin W. Vogtle Electric

Generating Plant near Waynesboro,

Georgia, USA. Westinghouse is providing

the design, critical equipment,

training and testing for each of the

units.

| | www.westinghousenuclear.com

Rosatom: The first large-scale

NPP construction project in

Uzbekistan launched

(rosatom) The event marked the beginning

of site surveys to determine

the best location for construction:

Geo technical drilling is currently

underway at one of the sites, preselected

for the project based on seismological,

geological, environmental

and economic feasibility studies.

Uzbekistan’s President Shavkat

Mirziyoyev and Russia’s President

Vladimir Putin have launched the

drilling by pressing a symbolic button.

The Uzbekistan nuclear power

plant will be the first large-capacity

NPP in the Central Asia. The project

envisages building two Generation

III+ power units based on VVER-1200

reactors. Thanks to its enhanced

reliability and modern design, the

facility will be fully compliant with the

IAEA safety standards.

“Uzbekistan and Russia have been

cooperating in nuclear for more than

half a century, and we are proud that

Uzbekistan has chosen the Russian

technology to build its first nuclear

plant,” Rosatom’s Director General

Alexey Likhachev said, speaking at the

event.

As of now, natural gas accounts for

nearly 84% of Uzbekistan’s energy

mix. The local government seeks to

replace some of its gas power plants

with nuclear generation. Doing so will

help in raising Uzbekistan’s natural

gas exports and make its energy mix

‘greener’.

On October 19, 2018, Rosatom, the

Academy of Sciences of Uzbekistan

and the Nuclear Energy Development

Agency (Uzatom) signed a memorandum

on cooperation in workforce

training for the country’s nuclear

power sector and related industries.

The memorandum also provides for

a branch of the National Research

Nuclear University (MEPhI) to be set

up in Tashkent. These agreements will

help Uzbekistan in developing nuclear

infrastructure to operate the NPP

safely.

General Director of Uzatom

Zhurabek Mirzamakhmudov, and

Alexey Likhachev also signed a memorandum

of understanding to raise

public awareness regarding nuclear

power in Uzbekistan.

Likhachev told reporters that

the contract for construction of

Uzbekistan’s first nuclear power

plant could be signed as soon as the

spring of 2019.

| | www.rosatom.ru

Market data

(All information is supplied without

guarantee.)

Nuclear Fuel Supply

Market Data

Information in current (nominal)

U.S.-$. No inflation adjustment of

prices on a base year. Separative work

data for the formerly “secondary

market”. Uranium prices [US-$/lb

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =

0.385 kg U]. Conversion prices [US-$/

kg U], Separative work [US-$/SWU

(Separative work unit)].

2014

• Uranium: 28.10–42.00

• Conversion: 7.25–11.00

• Separative work: 86.00–98.00

2015

• Uranium: 35.00–39.75

• Conversion: 6.25–9.50

• Separative work: 58.00–92.00

2016

• Uranium: 18.75–35.25

• Conversion: 5.50–6.75

• Separative work: 47.00–62.00

2017

• Uranium: 19.25–26.50

• Conversion: 4.50–6.75

• Separative work: 39.00–50.00

2018

January 2018

• Uranium: 21.75–24.00

• Conversion: 6.00–7.00

• Separative work: 38.00–42.00

February 2018

• Uranium: 21.25–22.50

• Conversion: 6.25–7.25

• Separative work: 37.00–40.00

March 2018

• Uranium: 20.50–22.25

• Conversion: 6.50–7.50

• Separative work: 36.00–39.00

April 2018

• Uranium: 20.00–21.75

• Conversion: 7.50–8.50

• Separative work: 36.00–39.00

May 2018

• Uranium: 21.75–22.80

• Conversion: 8.00–8.75

• Separative work: 36.00–39.00

June 2018

• Uranium: 22.50–23.75

• Conversion: 8.50–9.50

• Separative work: 35.00–38.00

July 2018

• Uranium: 23.00–25.90

• Conversion: 9.00–10.50

• Separative work: 34.00–38.00

August 2018

• Uranium: 25.50–26.50

• Conversion: 11.00–14.00

• Separative work: 34.00–38.00

| | Source: Energy Intelligence

www.energyintel.com

Cross-border Price

for Hard Coal

Cross-border price for hard coal in

[€/t TCE] and orders in [t TCE] for

use in power plants (TCE: tonnes of

coal equivalent, German border):

2012: 93.02; 27,453,635

2013: 79.12, 31,637,166

2014: 72.94, 30,591,663

2015: 67.90; 28,919,230

2016: 67.07; 29,787,178

2017: 91.28, 25,739,010

2018

I. quarter: 89.88; 5,838,003

II. quarter: 88.8258; 4,341,359

Source: BAFA, some data provisional

www.bafa.de

EEX Trading Results

September 2018

(eex) In September 2018, the

European Energy Exchange (EEX)

increased volumes on its power

derivatives markets by 42% to

377.1 TWh (September 2017:

265.8 TWh) and, as a result, reached

the highest monthly volume since

November 2016. In particular, record

volumes in Phelix-DE Futures

(232.8 TWh) and Phelix-AT Futures

(0.5 TWh) as well as in Futures for

the Italy (62.1 TWh) and Spain

(12.2 TWh) contributed to this

development. Furthermore, volumes

in power options increased by 60 %

to 12.2 TWh (September 2017:

7.7 TWh). The September volume

comprised 204.6 TWh traded at EEX

via Trade Registration with subsequent

clearing. Clearing and settlement

of all exchange transactions was

executed by European Commodity

Clearing (ECC).

On the EEX markets for emission

allowances, the total trading volume

increased by 69 % to 317.0 million

tonnes of CO 2 in September

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

NEWS

625

| | Uranium spot market prices from 1980 to 2018 and from 2008 to 2018. The price range is shown.

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.

| | Separative work and conversion market price ranges from 2008 to 2018. The price range is shown.

)1

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.

(Sep tember 2017: 187.8 million

tonnes of CO 2 ). The EUA derivatives

market accounted for a major share of

the total volume with 94.5 million

tonnes of CO 2 traded in EUA Futures

and 149.7 million tonnes of CO 2

traded in EUA Options. Primary

market auctions contributed

68.6 million tonnes of CO 2 to the

total volume.

The Settlement Price for base load

contract (Phelix Futures) with

delivery in 2019 amounted to

53.71 €/MWh. The Settlement

Price for peak load contract (Phelix

Futures) with delivery in 2019

amounted to 65.65 €/MWh.

The EUA price with delivery in

December 2018 amounted to

18.91/25.24 €/ EUA (min./max.).

October 2018

(eex) In October 2018, the European

Energy Exchange (EEX) increased

volumes on its power derivatives

markets by 30% to 339.3 TWh

( October 2017: 261,3 TWh). In particular,

the 4-fold increase in Phelix-

DE Futures to 204.4 TWh as well as

power futures for Italy (60.9 TWh,

+42%) and Spain (9.1 TWh, +32%)

contributed to this development. EEX

recorded a positive trend also in the

smaller markets: In power futures for

Great Britain, at 125,070 MWh, EEX

recorded the highest trading volume

since the launch of these products. In

the Dutch markets, volumes increased

by 18% to 2.1 TWh (October 2017:

1.8 TWh). The October volume comprised

185.0 TWh traded at EEX via

Trade Registration with subsequent

clearing. Clearing and settlement of

all exchange transactions was executed

by European Commodity Clearing

(ECC).

On the EEX markets for emission

allowances, the total trading volume

increased by 70% to 241.5 million

tonnes of CO 2 in October (October

2017: 142.3 million tonnes of CO 2 ). In

particular, this increase is driven by

the EUA Options with 89.6 million

tonnes of CO 2 traded in October.

Primary market auctions contributed

87.6 million tonnes of CO 2 to the total

volume.

The Settlement Price for base load

contract (Phelix Futures) with

delivery in 2019 amounted to

49.10 €/MWh. The Settlement

Price for peak load contract (Phelix

Futures) with delivery in 2019

amounted to 60.30 €/MWh.

The EUA price with delivery in

December 2018 amounted to

16.20/22.15 €/ EUA (min./max.).

| | www.eex.com

MWV Crude Oil/

Product Prices

August 2018

(mwv) According to information

and calculations by the Association

of the German Petroleum Industry

MWV e.V. in August 2018 the prices

for super fuel, fuel oil and heating

oil noted slightly higher compared

with the pre vious month July 2018.

The average gas station prices for

Euro super consisted of 149.44 €Cent

( June 2018: 147.45 €Cent, approx.

+1.35 % in brackets: each information

for pre vious month or rather previous

month comparison), for diesel fuel of

130.03 €Cent (128.92; +1.11 %) and

for heating oil (HEL) of 69.03 €Cent

(67.15 €Cent, +1.88 %).

Worldwide crude oil prices

(monthly average price OPEC/Brent/

WTI, Source: U.S. EIA) were slightly

lower, approx. -2.60 % (+1.48 %) in

August 2018 compared to July 2018.

The market showed a stable

development with slightly lower

prices; each in US-$/bbl: OPEC

basket: 72.26(73,27); UK-Brent:

72.53 (74.25); West Texas Intermediate

(WTI): 68.06 (70.98).

| | www.mwv.de

News


atw Vol. 63 (2018) | Issue 11/12 ı November/December

626

Brexit and Trump Among Fresh

Challenges for Nuclear in Year Ahead

NUCLEAR TODAY

John Shepherd is a

UK-based energy

writer and editor-inchief

of Energy

Storage Publishing.

Links to reference

sources:

UK commitment

to SMRs –

https://bit.ly/2PO0hIc

President Trump’s

Iran statement –

https://bit.ly/2yNtB82

IAEA report –

https://bit.ly/2xlpbnl

John Shepherd

As 2018 draws to a close, there have been several developments that will mean the new year dawning with fresh

uncertainties on the horizon for the global nuclear energy industry.

The clock that ticks towards 2019 is also counting down

towards the departure of the UK from the European Union

on 29 March – and nuclear is part of the biggest headache

facing UK leaders because of the uncertainties that still

surround Brexit.

As I write, a ‘deal’ over the UK’s future relationship with

the remaining states of the EU has yet to be done. Under a

‘no deal’ scenario, the UK will no longer be a member of

the Euratom Research and Training Programme, no longer

a member of Fusion for Energy and therefore unable to

collaborate on the International Thermonuclear Experimental

Reactor (Iter) project through the EU.

Adding to the UK’s dilemma is the fact that its electricity

and gas markets have become increasingly connected with

continental Europe over the years and a large proportion

of power is piped to the UK through underwater electricity

cables and gas pipelines.

Analysts say Brexit may have no impact on the UK’s

ability to use these interconnectors, but a divorce from the

EU is unlikely to make it easier to ensure essential power is

delivered in the event of wider European shortages. Which

is why nuclear has come under increasing focus to help

shore up security of energy supply.

In the first week of November, UK nuclear energy

minister Richard Harrington invited developers to submit

design proposals for small modular nuclear reactors. The

minister said the goal was “to identify potential risks with

proposals early on, reducing investment risks for potential

backers”. Support for SMRs in the UK has been gathering

pace among policymakers in recent years and now appears

to be in even sharper focus.

It is unclear how investors will view post-Brexit, which

is why Harrington also unveiled a £ 32 million (approximately

€ 37 m) ‘advanced manufacturing and construction

programme’, to allow companies to bid for funds to test

new technologies, which he said would “iron out potential

flaws before they start producing at scale”.

In a related development, the UK signed a bilateral

Nuclear Cooperation Agreement with Canada. This was

the third such agreement signed by the UK in 2018 in

readiness for Brexit and it will allow both sides to continue

what the UK said was “mutually beneficial” civil nuclear

cooperation after Euratom arrangements cease to apply

in the UK.

But fears over the potential impact of a no-deal divorce

from the EU on the UK’s nuclear industry have been rightly

raised by the Nuclear Industry Association (NIA). According

to the NIA, the industry generates around a fifth of all

electricity used in the UK, directly employs more than

63,000 professionals and has the support of more than

70 % of the public. In 2016, nuclear activities directly

contributed £6.4 billion to gross domestic product in the

UK. There is much at stake!

NIA chief executive Tom Greatrex has said “the movement

of people, goods, and services are essential to civil

nuclear” as for other industry sectors, but he has bemoaned

the “lack of detail from government on how this would

work in a no deal scenario”, saying it is “critical this is fully

detailed before March 2019”.

Further uncertainty facing global nuclear in 2019

comes from the US, where the Trump administration has

announced a new policy framework for curtailing civil

nuclear commerce with China. According to the US Nuclear

Energy Institute (NEI), the move follows “concerns over

Chinese diversion of sensitive technologies to military and

other unauthorised uses”.

The NEI has warned the new policy framework risks

“commercial harms” to the industry at home and abroad.

In addition to blocking transfers to China of advanced

reactor and non light water small reactor technology, the

NEI said the framework “will establish a presumption of

denial for transfers to the China General Nuclear Power

Group, a Chinese energy company that constructs and

operates nuclear power plants, and for all new technology

transfers” after 1 January 2018.

President Trump has also risked the further destabilisation

of the international civil nuclear order by formally

terminating US participation in the Iran nuclear deal

( officially known as the Joint Comprehensive Plan of

Action – JCPOA). As of 5 November 2018, the last set of US

sanctions lifted under the existing “terrible nuclear deal”

would come back into force, the President said.

The JCPOA was designed to end years of tension and

fears about military aspects of Iran’s nuclear activities. All

other signatories to the agreement have said it is working

and that they want to keep it in place, without the US if

necessary. But President Trump’s decision to pull out risks

undoing all that has been achieved.

The US decision also puts confidence in nuclear safeguards

at risk, because the actions of the Trump administration

are effectively an attack on the credibility of the

International Atomic Energy Agency (IAEA), which has been

tasked with monitoring Iran’s compliance with the JCPOA

deal. If the so-called leader of the free world cannot trust in

the work of the IAEA to establish nuclear transparency in

Iran, but can trust the promises of North Korea to scale

down its secret nuclear programme, the whole world has a

problem.

However, it would be wrong to suggest there is doom

and gloom for nuclear everywhere we look.

According to a recent report from the IAEA, nuclear

power still generates almost 11 % of the world’s electricity

– amounting to one-third of our planet’s low-carbon

electricity. Global electricity demand is expected to almost

double by 2050, so nuclear still has everything to play for.

Author

John Shepherd

Shepherd Communications

3 Brooklands

West Sussex BN43 5FE, United Kingdom

Nuclear Today

Brexit and Trump Among Fresh Challenges for Nuclear in Year Ahead ı John Shepherd


Kommunikation und

Training für Kerntechnik

Rückbau kerntechnischer Anlagen

In Kooperation mit

TÜV SÜD Energietechnik GmbH

Baden-Württemberg

Seminar:

Stilllegung und Rückbau in Recht und Praxis

Seminarinhalte

Genehmigungen für die Stilllegung und den Rückbau

ı

ı

Gestaltung der Übergänge zwischen der Betriebs- und der Stilllegungsgenehmigung

Gestaltung der Übergänge zwischen Genehmigungs- und Aufsichtsphase

Rechtliche Gestaltung des Genehmigungsverfahrens

ı

ı

ı

ı

Elemente des Umweltbereiches

UVP und Erörterungstermin

Anfechtung von Genehmigungen

Stellungnahmen der EU-Kommission

Reststoffe und Abfälle

ı

ı

ı

ı

Vorstellung von Reststoffkonzepten

Bewertung der Reststoffkonzepte

Neue Regelungen zum Übergang der Entsorgungsverantwortung

Entsorgungsfragen rund um Abfälle aus dem Rückbau

Zielgruppe

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, Mitarbeiterinnen und Mitarbeiter

von Betreibern, Industrie und Dienstleistern, die sich mit der Thematik aktuell bereits beschäftigen

oder sich künftig damit auseinander setzen werden.

Maximale Teilnehmerzahl: 12 Personen

Referenten

Dr. Matthias Bauerfeind

Dr. Christian Raetzke

Wir freuen uns auf Ihre Teilnahme!

ı Abteilung Stilllegung, Entsorgung, Reaktorphysik, TÜV SÜD Energietechnik

GmbH Baden-Württemberg

ı Rechtsanwalt, Leipzig

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.

Termine

2 Tage

29. bis 30. Januar 2019

24. bis 25. September 2019

Tag 1: 10:30 bis 17:45 Uhr

Tag 2: 09:00 bis 16:45 Uhr

Veranstaltungsort

Geschäftsstelle der INFORUM

Robert-Koch-Platz 4

10115 Berlin

Teilnahmegebühr

1.598,– € ı zzgl. 19 % USt.

Im Preis inbegriffen sind:

ı Seminarunterlagen

ı Teilnahmebescheinigung

ı Pausenverpflegung

inkl. Mittagessen

Kontakt

INFORUM

Verlags- und Verwaltungsgesellschaft

mbH

Robert-Koch-Platz 4

10115 Berlin

Petra Dinter-Tumtzak

Fon +49 30 498555-30

Fax +49 30 498555-18

seminare@kernenergie.de


Early Bird Discount!

Register by 31 January and

save up to 170,– €

7 – 8 May 2019

Estrel Convention Center Berlin, Germany

www.amnt2019.com

#50AMNT

Plenary Keynote Selection

› Thomas Bareiß MdB, Parliamentary State Secretary at the Federal Ministry for Economic Affairs

and Energy (BMWi), Germany

› Matthias Horx, Trend Researcher and Futurologist, Austria

› William D. Magwood, IV, Director-General, Nuclear Energy Agency (NEA), France

› Prof. Dr. Martin Neumann MdB, Speaker on Energy Policy of the FDP Parliamentary Group,

German Bundestag, Germany

› Prof. Dr. Renate Köcher, CEO, Institut für Demoskopie Allensbach, Germany

› Uwe Stoll, Scientific and Technical Director, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)

gGmbH, Germany

Celebrate with us our 50 th anniversary

Key Topics

Outstanding Know-How & Sustainable Innovations

Enhanced Safety & Operation Excellence

Decommissioning Experience & Waste Management Solutions

Media Partner

The International Expert Conference on Nuclear Technology

More magazines by this user
Similar magazines