05.01.2013 Views

Mass Spectrometry - Faculté de médecine de l'université d'Ottawa

Mass Spectrometry - Faculté de médecine de l'université d'Ottawa

Mass Spectrometry - Faculté de médecine de l'université d'Ottawa

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mass</strong> <strong>Spectrometry</strong><br />

D. Figeys<br />

The Ottawa Institute of Systems Biology<br />

University of Ottawa<br />

dfigeys@uottawa.ca<br />

613-562 613 562-5800 5800 ext 8674<br />

11/21/2005 1


11/21/2005 2


A mass spectrum: a plot of the relative abundance of ions of different m/z in a given sample.<br />

11/21/2005 3


Pumping<br />

system<br />

Sample<br />

introduction<br />

DIRECT<br />

INTRODUCTION<br />

(solid, liquid, gas)<br />

SEPARATION<br />

TECHNIQUES<br />

(HPLC, CE, GC)<br />

ION SOURCE<br />

(“ion ion generation”)<br />

generation<br />

EI, FAB,<br />

MALDI,Electrospray<br />

TOF, quadrupole, quadrupole,<br />

ion trap<br />

vacuum<br />

ANALYZER<br />

(“mass mass analysis”) analysis<br />

Detector<br />

Data<br />

Processing<br />

Brancia FL , Trieste, 12/02/2004<br />

11/21/2005 4


Pumping<br />

system<br />

Sample<br />

introduction<br />

DIRECT<br />

INTRODUCTION<br />

(solid, liquid, gas)<br />

SEPARATION<br />

TECHNIQUES<br />

(HPLC, CE, GC)<br />

ION SOURCE<br />

(“ion ion generation”)<br />

generation<br />

EI, FAB,<br />

MALDI,Electrospray<br />

TOF, quadrupole, quadrupole,<br />

ion trap<br />

vacuum<br />

ANALYZER<br />

(“mass mass analysis”) analysis<br />

Detector<br />

Data<br />

Processing<br />

Brancia FL , Trieste, 12/02/2004<br />

11/21/2005 5


The Turbomolecular pump:<br />

11/21/2005 6


Why is a vacuum necessary?<br />

The mean free path, λ, is the average distance traveled by an ion before it colli<strong>de</strong>s with an<br />

air molecule, and is given by:<br />

1<br />

λ = (1.4)<br />

Nσ<br />

where N is the gas number <strong>de</strong>nsity, and σ is the collision cross section between the ion<br />

and the molecule (typically ~50 Å 2 for a small pepti<strong>de</strong> ion). Using a collision cross<br />

section of 50 Å 2 , the following table may be constructed:<br />

11/21/2005 7


Pumping<br />

system<br />

Sample<br />

introduction<br />

DIRECT<br />

INTRODUCTION<br />

(solid, liquid, gas)<br />

SEPARATION<br />

TECHNIQUES<br />

(HPLC, CE, GC)<br />

ION SOURCE<br />

(“ion ion generation”)<br />

generation<br />

EI, FAB,<br />

MALDI,Electrospray<br />

TOF, quadrupole, quadrupole,<br />

ion trap<br />

vacuum<br />

ANALYZER<br />

(“mass mass analysis”) analysis<br />

Detector<br />

Data<br />

Processing<br />

Brancia FL , Trieste, 12/02/2004<br />

11/21/2005 8


Various ionisation<br />

methods<br />

�� Electron impact ionisation (1919 A.J.<br />

Dempster)<br />

Dempster<br />

�� Chemical Ionisation CI<br />

�� Fast atomic bombardment FAB (1981 M.<br />

Barber)<br />

�� Matrix-assisted Matrix assisted laser <strong>de</strong>sorption<br />

ionisation MALDI (1988 K. Tanaka, M.<br />

Karas F. Hillenkamp)<br />

Hillenkamp<br />

�� Electrospray ES (1985, J. Fenn) Fenn<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 9


1. Gas phase ion production:<br />

Solid Liquid Gas<br />

Ice Water Steam<br />

Protein<br />

Charred Protein<br />

Soft ionization techniques:<br />

1. Electrospray ionization (ESI)<br />

2. Matrix-assisted laser<br />

<strong>de</strong>sorption ionization (MALDI)<br />

11/21/2005 10


Electrospray ionization<br />

11/21/2005 11


Credited with the invention<br />

of electrospray ionization<br />

(ESI)<br />

11/21/2005 12


Droplet shrinks<br />

due to solvent<br />

evaporation<br />

electrospray<br />

capillary<br />

Droplet explo<strong>de</strong>s due<br />

to charge <strong>de</strong>nsity limit<br />

counter<br />

electro<strong>de</strong><br />

(near ground)<br />

skimmer<br />

electro<strong>de</strong>s<br />

atmospheric<br />

pressure<br />

mass analyzer<br />

[M+nH] M+nH] n+<br />

Gaseous ions formed via<br />

one of two proposed<br />

mechanisms<br />

high vacuum<br />

pressure gradient<br />

potential gradient<br />

+HV<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 sample<br />

11/21/2005<br />

13<br />

solution


ESI<br />

solution<br />

Spray capillary – 2-5 kV Taylor<br />

cone<br />

-<br />

+<br />

+ + +<br />

+ + + + + + + +<br />

- -<br />

+<br />

-<br />

- -<br />

- - -<br />

- - -<br />

Electron<br />

flow<br />

Oxidation<br />

+ +<br />

+<br />

+ +<br />

+ +<br />

+ +<br />

+<br />

-<br />

Excess charge<br />

on surface<br />

+ -<br />

Power supply<br />

2-5 kV<br />

ESI droplets<br />

++<br />

+<br />

+ +<br />

+ +-<br />

++ + +<br />

+ +-<br />

++ + +<br />

+ +-<br />

+<br />

+<br />

Metal<br />

plate<br />

0-1 kV<br />

+ +<br />

+ + +<br />

+ +<br />

+ + + + +<br />

+ + + +<br />

+<br />

+ + + ++ +<br />

+ +<br />

Solvent and<br />

neutralized ions<br />

<strong>Mass</strong><br />

spectrometer<br />

Reduction<br />

Electrospray ionization. An analyte solution is sprayed through a charged capillary towards the<br />

sampling orifice of the mass spectrometer; individual ions are sampled by the mass spectrometer in the<br />

gas-phase.<br />

11/21/2005 14


Two examples of common ESI oxidation reactions are:<br />

and<br />

4OH - (aq) � O2(g) + 2H2O(l) + 4e - (aq) (1.1)<br />

E o (reduction) = 0.40 V<br />

2H2O(l) � O2(g) + 4H + (aq) + 4e - (aq) (1.2)<br />

E o (reduction) = 1.23 V<br />

The majority of electrosprayed positive ions impinge on the surface of the plate and are<br />

neutralized or reduced. Electrospray capillaries are composed of materials that have<br />

higher reduction potentials (or ionization energies) than that of OH - or H2O so that the<br />

appearance of metal ions in the mass spectra is avoi<strong>de</strong>d 11 , for example:<br />

M(s) � M + (aq) + e - (aq) (where M is a <strong>de</strong>fined material) (1.3)<br />

Generally these inclu<strong>de</strong>, platinum (E o (reduction) = 1.2 V 13 ), palladium (E o (reduction) = 0.987<br />

V 14 ), gold (E o (reduction) = 1.68 V 13 ), stainless steel (mixture of Mn and Cr oxi<strong>de</strong>s<br />

(E o (reduction) is between 1.2 and 1.5 V 13 ) and fused silica (SiO2) (non-conductive) mixed<br />

with stainless steel components.<br />

11/21/2005 15


ESI<br />

solution<br />

-<br />

2-5 kV<br />

+<br />

+ + +<br />

+ + + + + + + +<br />

- -<br />

+<br />

-<br />

- -<br />

- - -<br />

- - -<br />

+ +<br />

+ + + +<br />

+<br />

+<br />

+<br />

+<br />

+ + + + +<br />

+ a)<br />

+<br />

+ + +<br />

++<br />

++ ++ ++ ++ ++<br />

Uneven Rayleigh fission<br />

b)<br />

c) +<br />

+<br />

+ +<br />

+<br />

+ +<br />

+ +<br />

+ +<br />

+<br />

-<br />

Highly charged droplets<br />

Radii = 10-20 nm<br />

ESI droplets<br />

++<br />

+<br />

+ +<br />

+ +-<br />

++ + +<br />

+ +-<br />

++ + +<br />

+ +-<br />

+<br />

+<br />

0-1 kV<br />

+ +<br />

+ + +<br />

+ +<br />

+ + + + +<br />

+ + + +<br />

+<br />

+ + + ++ +<br />

+ +<br />

<strong>Mass</strong><br />

spectrometer<br />

ESI process revealing droplet shrinkage and a) uneven Rayleigh fission, followed by two divergent ion<br />

11/21/2005 <strong>de</strong>solvation theories: b) the ion evaporation theory 16<br />

17, 18 , and c) the charge residue theory5 .<br />

+ + +<br />

+<br />

+<br />

+<br />

Single solvated ions<br />

Radii = 1-10 µm<br />

Solvated clusters ejected<br />

Complete solvent evaporation<br />

produces bare ions


The principal outcome of the electrospray<br />

process is the transfer of analyte species,<br />

generally ionised in con<strong>de</strong>nsed phase, into<br />

the gas phase as isolated entities<br />

+HV<br />

+ + + + + + + +<br />

+ ++ + ++<br />

+ Aerosol of<br />

charged droplets<br />

Gaskell SJ Jounal of <strong>Mass</strong> <strong>Spectrometry</strong> 1997 Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 17


11/21/2005 18


ESI<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Direction of<br />

electric field<br />

+ Analyte ion<br />

760 Torr<br />

+<br />

+<br />

CP<br />

Adducted solvent molecule<br />

55 psi 2.5 Torr 10 -3 Torr<br />

N 2<br />

+ + +<br />

N 2<br />

CUR RNG<br />

OR SK<br />

The front end of a mass spectrometer <strong>de</strong>signed to sample ions produced by ESI.<br />

11/21/2005 19<br />

q0<br />

IQ1


4 - 5.5 kV<br />

ESI<br />

solution<br />

-<br />

+<br />

+ + +<br />

+ + + + + + + +<br />

- -<br />

+<br />

-<br />

- -<br />

- - -<br />

- - -<br />

Flow of gas (N 2 or air) nebulizing<br />

the solution being electrosprayed<br />

+ +<br />

+<br />

+ +<br />

+ +<br />

+ +<br />

+<br />

-<br />

ESI droplets<br />

++<br />

+<br />

+ +<br />

+ +-<br />

++ + +<br />

+ +-<br />

++ + +<br />

+ +-<br />

+<br />

+<br />

0 - 1 kV<br />

+ +<br />

+ + +<br />

+ +<br />

+ + + + +<br />

+ + + +<br />

+<br />

+ + + ++ +<br />

+ +<br />

<strong>Mass</strong><br />

spectrometer<br />

Schematic diagram of ionspray, or pneumatically-assisted electrospray ionization. The Taylor cone is<br />

nebulized with N2 or air, aiding droplet formation and <strong>de</strong>solvation and allowing for a more stable spray<br />

and higher flow rates.<br />

11/21/2005 20


ES spectrum of Rho protein<br />

100<br />

%<br />

682.1<br />

682.0<br />

672.4<br />

672.2<br />

653.9<br />

724.1<br />

713.2<br />

713.0<br />

702.6<br />

702.4<br />

735.5<br />

759.3<br />

771.6<br />

759.1<br />

747.1<br />

784.4<br />

797.7<br />

825.6<br />

840.3<br />

855.6<br />

871.7<br />

888.0<br />

Rho Protein: 47004.33 Da<br />

905.0<br />

941.0<br />

[M+56H] 56+<br />

960.2 980.3<br />

0<br />

m/z<br />

600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300<br />

11/21/2005 Openshaw Brancia FL, Trieste, 12/02/2004<br />

21<br />

1001.2<br />

Courtesy of Dr Matt Openshaw<br />

[M+50H] 50+


Electrospray (ES)<br />

[M+56H] 56+ = 840.3 m/z<br />

Therefore, M = [840.3 x 56] – 56<br />

= 47000.8 Da<br />

Deconvolution: Takes all the multiply charged<br />

ions and converts them into a spectrum on a<br />

mass (Da) scale i.e. works out the molecular<br />

weight is most likely to be.<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 22


100<br />

%<br />

ES spectrum after<br />

<strong>de</strong>convolution<br />

47004.9<br />

47004.0 Da<br />

0<br />

mass<br />

44000 44500 45000 45500 46000 46500 47000 47500 48000 48500 49000 49500 50000<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 23


Relative abundance<br />

A) <strong>Mass</strong> spectrum of unfol<strong>de</strong>d cytochrome c leading to higher charge states from a higher <strong>de</strong>gree of<br />

protonation (most abundant charge state has 16 positive charges on it). B) <strong>Mass</strong> spectrum of cytochrome<br />

c in a more native, fol<strong>de</strong>d conformation resulting in less protonation (8 or 9 positive charges on it).<br />

(Adapted from Konermann, L., Collings, B.A., Douglas, D.J. Cytochrome c folding kinetics studied by timeresolved<br />

electrospray ionization mass spectrometry. Biochemistry 36, 5554-5559 (1997)).<br />

11/21/2005 24<br />

Relative abundance


22+<br />

11/21/2005 25<br />

22+


Advantages<br />

�� Production of molecular ions from solution<br />

�� The ease of coupling with separation<br />

techniques (micro LC-MS/MSMS,<br />

LC MS/MSMS, nano LC- LC<br />

MS/MSMS)<br />

�� Production of multiply charged ions<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 26


Matrix assisted laser <strong>de</strong>sorption<br />

ionization<br />

11/21/2005 27


Credited with the invention<br />

of laser <strong>de</strong>sorption ionization<br />

(LDI) which led to the<br />

<strong>de</strong>velopment of MALDI<br />

11/21/2005 28


A standard 100 well UV MALDI sample plate.<br />

11/21/2005 29


2,5-Dihydroxy<br />

benzoic acid<br />

(DHB)<br />

Trans-3,5-dimethoxy-4-hydroxy<br />

cinnamic acid (commonly<br />

known as sinapic acid or<br />

Sinapinic acid, SA)<br />

4-Hydroxy-α-cyanocinnamic acid Glycerol*<br />

* - common matrix for IR MALDI experiments<br />

2,4,6-Trihydroxy<br />

acetophenone<br />

(THAP)<br />

Common chromophoric matrices used in UV MALDI with the noted exception of glycerol (in grey box),<br />

which is commonly used as a chromophoric matrix in IR MALDI.<br />

11/21/2005 30


Sample plate<br />

2-3 kV<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

++<br />

+<br />

+<br />

+<br />

N 2 laser<br />

(337 nm)<br />

+<br />

+<br />

+<br />

Grid or lens<br />

at lower<br />

voltage than<br />

plate<br />

+<br />

+<br />

+<br />

++<br />

+<br />

Vi<strong>de</strong>o<br />

camera<br />

The matrix-assisted laser <strong>de</strong>sorption ionization process. Laser ablation causes ions and neutrals to be<br />

<strong>de</strong>sorbed and efficient ionization to occur. Ions are released into the gas-phase and their m/z ratios analyzed<br />

11/21/2005 31<br />

by mass spectrometry.<br />

Ions<br />

Ions<br />

Ions<br />

Ions<br />

Ions<br />

+<br />

+<br />

Neutral matrix<br />

+<br />

1 + matrix<br />

1 + matrix dimer<br />

+<br />

+<br />

+ +<br />

++<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Neutral analyte<br />

1 + analyte<br />

+<br />

1 + analyte dimer<br />

++ 2+ analyte


MALDI is an efficient <strong>de</strong>sorption<br />

ionisation technique for producing<br />

gaseous ions from a solid sample<br />

by laser pulses<br />

[M+H] +<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 32


Why is the matrix so<br />

important?<br />

�� Matrix is necessary to dilute and disperse<br />

the analyte<br />

�� It functions as energy mediator for<br />

ionising the analyte itself or other neutral<br />

molecule<br />

�� It forms an activated state produced by<br />

photo ionisation<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 33


Proposed MALDI mechanisms:<br />

1. Primary ionization mechanisms<br />

i. Multiphoton ionization<br />

ii. Energy pooling and multicenter mo<strong>de</strong>ls<br />

iii. Excited-state proton transfer (ESPT)<br />

iv. Disproportionation reactions<br />

v. Desorption of pre-formed ions<br />

vi. Thermal ionization<br />

2. Secondary ionization mechanisms<br />

i. Gas-phase proton transfer<br />

ii. Gas-phase cationization<br />

iii. Electron transfer<br />

MALDI is likely a combination of many of these<br />

11/21/2005 34


Matrix Assisted Laser<br />

Desorption/Ionisation<br />

(MALDI)<br />

Unlike ES, MALDI forms predominantly singly<br />

charged ions e.g. [M+H] + or adducts (sodium<br />

[M+Na] + or potassium [M+K] + )<br />

[M+H] +<br />

22 m/z<br />

Sodium = 23 amu<br />

Potassium = 39 amu<br />

[M+Na] +<br />

38 m/z<br />

[M+K] +<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 35


Advantages<br />

�� MALDI primarily creates singly charged<br />

ions [M+H] +<br />

�� Less sensitive to contaminants<br />

�� Sensitivity at femtomole level<br />

�� High throughput analysis<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 36


Pumping<br />

system<br />

Sample<br />

introduction<br />

DIRECT<br />

INTRODUCTION<br />

(solid, liquid, gas)<br />

SEPARATION<br />

TECHNIQUES<br />

(HPLC, CE, GC)<br />

ION SOURCE<br />

(“ion ion generation”)<br />

generation<br />

EI, FAB,<br />

MALDI,Electrospray<br />

TOF, quadrupole, quadrupole,<br />

ion trap<br />

vacuum<br />

ANALYZER<br />

(“mass mass analysis”) analysis<br />

Detector<br />

Data<br />

Processing<br />

Brancia FL , Trieste, 12/02/2004<br />

11/21/2005 37


Quadrupole<br />

11/21/2005 38


-(U + V o cosΩt)<br />

r<br />

r o<br />

+<br />

−<br />

−<br />

+<br />

(U + V o cosΩt)<br />

r = 1.1487r o<br />

Schematic of a quadrupole mass filter. Rods opposite from each other carry the same direct current (DC or<br />

U) potential and RF (V) potential. Rods in the x-direction carry a positive U; rods in the y-direction carry a<br />

negative U and an RF potential that is 180<br />

11/21/2005 39<br />

o out of phase from the RF potential applied to the rods in the xdirection.<br />

Ions enter the rods and travel in the z-direction stabilized by the quadrupolar electric field set up in<br />

the x-y plane. In or<strong>de</strong>r to optimize the field to maximize ion transmission and filtration efficacy, the rods have<br />

a radius (r) that is 1.1487 times as large as the distance of closest approach from one of them to the central<br />

z-axis of the ensemble (ro ).<br />

y<br />

x<br />

z


100<br />

RF potential<br />

-100<br />

+100<br />

-100<br />

-100<br />

+100<br />

-100<br />

y<br />

z<br />

+100<br />

+100<br />

x<br />

-100<br />

The hypothetical voltages on a quadrupole operating in RF-only mo<strong>de</strong> versus time (t). The quadrupoles are<br />

displayed with the x-y plane perpendicular to the page (z-direction going into the page). The two rods in the yz<br />

direction operate with an RF potential that is 180<br />

11/21/2005 40<br />

o out of phase from the rods in the x-z direction.<br />

+100<br />

-100<br />

-100<br />

+100<br />

t


http://elchem.kaist.ac.kr/vt/chem-ed/ms/quadrupo.htm<br />

Ramping magnitu<strong>de</strong> of the DC/AC in a constant ratio<br />

produces a mass spectrum!<br />

11/21/2005 41


Single quadrupole<br />

The quadrupole mass analyzer can separate ions according to their m/z ratio<br />

11/21/2005 42


What if we place three quadrupoles in a row?<br />

Q1 Q2 Q3<br />

What if we place the second quadrupole can be<br />

used to break molecules?<br />

gas<br />

11/21/2005 43


MS<br />

MS scan<br />

11/21/2005 44


Product ion scan or MS/MS<br />

MS/MS gas<br />

Product ion scan: Q1 allows 1 type of ion through, it fragments in q2,<br />

and Q3 ramps and analyzes the products.<br />

11/21/2005 45


MS<br />

Precurson ion scan<br />

gas<br />

Q1 ramps and analyzes each ion, they fragment in q2,<br />

and Q3 analyzes for one specific ion, when it is <strong>de</strong>tected, the spectrum<br />

displays the m/z of the ion that the fragment came from (the precursor ion).<br />

11/21/2005 46


MS<br />

Neutral loss scan<br />

gas<br />

Neutral loss scan: Q1 ramps and analyzes each ion, they fragment in q2,<br />

and Q3 ramps and analyzes each ion at the same rate, but out of phase with<br />

Q1, the spectrum displays the m/z of the ion that lost a specific mass so that it<br />

could pass through Q3 as well (neutral loss, since charge does not change).<br />

11/21/2005 47


Time of Flight<br />

11/21/2005 48


Time-of Time of-flight flight (ToF) mass<br />

MALDI target<br />

mv 2 /2= zV<br />

spectrometer<br />

Flight tube (field-free (field free region)<br />

Extraction grid<br />

t = 0 t = > 0<br />

Detector<br />

t2 =m/z(d 2 /2V)<br />

Brancia FL, Trieste, 12/02/2004<br />

11/21/2005 49


L<br />

H<br />

Ion<br />

accelerator<br />

L L L<br />

H H H<br />

Drift tube Ion<br />

<strong>de</strong>tector<br />

R = m/∆m<br />

= FWHM<br />

11/21/2005 50


Reflectron ion optics:<br />

s3<br />

s2<br />

s1<br />

700 V 0 V<br />

Ion<br />

<strong>de</strong>tector<br />

Ion<br />

accelerator<br />

Drift tube<br />

FOCAL POINT<br />

Ion<br />

mirror<br />

grid<br />

Ion mirror<br />

0 V 850 V<br />

Three different ions with i<strong>de</strong>ntical m/z ratios<br />

11/21/2005 51


Sample plate<br />

Turbomolecular<br />

pump<br />

Ionization<br />

Pulsing region<br />

laser<br />

Separation<br />

camera<br />

Detectors<br />

(reflectron mo<strong>de</strong>)<br />

Ion<br />

<strong>de</strong>flector<br />

Turbomolecular<br />

pump<br />

Detector<br />

(linear mo<strong>de</strong>)<br />

Ion mirror<br />

11/21/2005 52


Time-Of Time Of-Flight Flight MS<br />

11/21/2005 53


2000<br />

1500<br />

1000<br />

500<br />

0<br />

MALDI spectrum of an enolase tryptic<br />

digest<br />

656.16<br />

726.43<br />

R<br />

756<br />

R<br />

807.46<br />

1057.77<br />

1170.72 1159.77<br />

1286.90<br />

1308.83<br />

R<br />

1412.96<br />

11/21/2005 54<br />

R<br />

1790.0320<br />

1822.1611<br />

R<br />

R<br />

K<br />

K K<br />

184<br />

2442.40


Ion traps: Hyperbolic<br />

11/21/2005 55


Ion generation<br />

ESI<br />

Electrospray- Ion Trap mass spectrometer<br />

Ion Gui<strong>de</strong> Ion trap Detector<br />

11/21/2005 56


Ion Trap.<br />

Axial<br />

Radial<br />

toroidal ring electro<strong>de</strong><br />

two hyperbolic endcap electro<strong>de</strong>s.<br />

11/21/2005 57<br />

RF<br />

DC<br />

=0V


Ion injection, and gating<br />

Time<br />

Ion injection<br />

Ion gating<br />

11/21/2005 58


Once in the trap<br />

11/21/2005 59


11/21/2005 60


Ion traps: Linear<br />

11/21/2005 61


Linear ion trap<br />

11/21/2005 62


Ion traps: Orbital<br />

11/21/2005 63


Trajectories in the orbitrap<br />

�� Characteristic frequencies:<br />

Characteristic frequencies:<br />

�� Frequency of rotation<br />

Frequency of rotation ωω φφ<br />

�� Frequency of radial oscillations<br />

�� Frequency of axial oscillations<br />

r<br />

Frequency of radial oscillations ωω rr<br />

Frequency of axial oscillations ωω zz<br />

φ<br />

2 2 2<br />

{ z − r / 2 + R ln( r / R ) }<br />

k<br />

U ( r,<br />

z)<br />

= ⋅<br />

m ⋅<br />

2<br />

ω = ω<br />

11/21/2005 64<br />

m<br />

z<br />

ω ϕ<br />

ω<br />

r<br />

z<br />

=<br />

=<br />

ωz<br />

2<br />

z<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

Rm R<br />

k<br />

m / q<br />

Rm R<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

−1<br />

− 2


Lord of the ion rings: Forging of<br />

the ring<br />

Electrodynamic<br />

Squeezing<br />

A.A. Makarov, Anal. Chem., v.72<br />

(2000), No.6, p.1156-1162.<br />

A.A. Makarov, US Pat. 5,886,346,<br />

1999.<br />

“Fast” Injection


Lord of the ion rings:<br />

Retainment of the rings<br />

ω =<br />

1. Frequencies are <strong>de</strong>termined using a Fourier Transformation<br />

2. For higher sensitivity AND resolution, transients should not <strong>de</strong>cay too fast<br />

Ultra-high vacuum Ultra-high precision<br />

11/21/2005 66<br />

k<br />

m /<br />

z


LTQ-Orbitrap: LTQ Orbitrap: 2 nd generation of the<br />

“fast fast” injection (orthogonal)<br />

1. Ions are stored in the linear trap<br />

2. …are axially ejected<br />

3. …and trapped in the C-trap and<br />

squeezed into a smaller cloud<br />

4. …then a voltage pulse across C-trap<br />

ejects ions towards the Orbitrap<br />

5. …where they are trapped and <strong>de</strong>tected<br />

-2 k V<br />

-3.5 k V<br />

Central<br />

Electro<strong>de</strong><br />

Voltage<br />

11/21/2005 67<br />

V<br />

Gas


Hybrid: Qq-TOF Qq TOF<br />

11/21/2005 68


700 L/s<br />

250 L/s<br />

Ion<br />

path Q<br />

760<br />

Torr<br />

55<br />

psi<br />

2.5<br />

Torr<br />

10 -3 Torr<br />

Ion Gauge<br />

3 x 10 -5 Torr<br />

Schematic of a QqTOF mass spectrometer<br />

indicating the pressures of the various inner<br />

chambers (in red). Both of the analyzer chambers<br />

are equipped with ion gauges, which accurately<br />

measure the pressure in these regions. On the<br />

si<strong>de</strong>s of the instrument (in grey) are 3<br />

turbomolecular pumps, two with pumping speeds<br />

of 700 L/s, and one with a pumping speed of 250<br />

L/s.<br />

700 L/s<br />

Ion Gauge<br />

3 x 10 -7 Torr<br />

11/21/2005 69<br />

q<br />

TOF


q0 ST<br />

IQ1 GR<br />

Q1<br />

Schematic of a QqTOF mass spectrometer revealing the positions of the quadrupoles (q0, ST, Q1, and q2).<br />

Lowercase “q” refers to a non-resolving quadrupole while uppercase “Q” indicates that the quadrupole has<br />

resolving capabilities; “ST” refers to the stubby quadrupole. IQ1, IQ2, and IQ3 refer to the inter-quadrupole<br />

(IQ) lenses and GR refers to the grid (consi<strong>de</strong>red a part of the TOF region, vi<strong>de</strong> infra). The orange dotted line<br />

11/21/2005 represents the ion path traveling axially, or in the z-direction of the instrument.<br />

70<br />

q2<br />

IQ2 IQ3


11/21/2005 71


700 L/s<br />

Q3 can be replaced by a<br />

time-of-flight (TOF)<br />

mass analyzer<br />

250 L/s<br />

Ion<br />

path Q<br />

760<br />

Torr<br />

55<br />

psi<br />

2.5<br />

Torr<br />

10 -3 Torr<br />

Ion Gauge<br />

Q1 q2<br />

Q3<br />

3 x 10 -5 Torr<br />

700 L/s<br />

Ion Gauge<br />

3 x 10 -7 Torr<br />

11/21/2005 72<br />

q<br />

TOF


GR<br />

q0<br />

SL Pusher<br />

Q1<br />

Puller<br />

q2<br />

TOF<br />

Liner<br />

Ion mirror<br />

Detector<br />

(MCP)<br />

11/21/2005 73


Time-of-flight (TOF)<br />

mass spectrometry:<br />

zeEs = 1/2mv 2<br />

v = ((2zeEs)/m) 1/2<br />

11/21/2005 74


Fourier transformed ion<br />

cyclotron<br />

11/21/2005 75


Animation<br />

11/21/2005 76


Protein i<strong>de</strong>ntification by mass<br />

spectrometry.<br />

11/21/2005 77


Protein i<strong>de</strong>ntification by mass spectrometry<br />

MS<br />

MALDI-TOF<br />

<strong>Mass</strong> of pepti<strong>de</strong>s<br />

From proteins<br />

MS+ MS/MS<br />

Triple quadrupole<br />

Ion trap, Qstar, Qtof<br />

O-maldi, FT-MS<br />

<strong>Mass</strong> of pepti<strong>de</strong>s<br />

And fragmentation patterns<br />

Related to their amino acid sequence<br />

11/21/2005 78


Protein i<strong>de</strong>ntification: Bioinformatic<br />

Basic principle: Proteins are i<strong>de</strong>ntified by correlating the<br />

information obtained from the mass spectrometer and the<br />

information contained in protein and/or DNA sequence databases.<br />

The result is a link between a protein on a 2D gel and a<br />

corresponding protein and/or DNA sequence entry in a database.<br />

U. Washington and Finnigan: Sequest<br />

EMBL: Sequence TAG<br />

Protein prospector: MS-FIT, MS-TAG, MS-Products<br />

Rockefeller and Proteometrix: ProFound<br />

Mascot<br />

11/21/2005 79


Pepti<strong>de</strong> mass fingerprinting<br />

11/21/2005 80


MALDI-TOF spectrum<br />

11/21/2005 81


Pepti<strong>de</strong> mass fingerprinting: principle<br />

MS<br />

600 Da<br />

840 Da<br />

1044 Da<br />

1236 Da<br />

1650 Da<br />

Trypsin<br />

Database:<br />

MKALSPVRGCYEAVCCLSERSLAIARGRGKSPSA<br />

EEPLSLLDDMNHCYSRLRELVPGVPRGTQLSQVEI<br />

LQRVIDYILDLQVVLAEPAPGPPDGPHLPIQVREGA<br />

RPGSSERAGWDAAGLPHRVLEYLG<br />

AVAKVELRGTVQPASNFNDDGDAQGLGTDEGAIIX<br />

VLTQRSNAQAVEGAGTDESTLIELMATRNNQEIAAI<br />

NEAYSLEDDLSSDTSGHFRILVSLALGNRDEGPEN<br />

LTQAVVAETLNKPAFFADRLLALXGGDD<br />

MRWLTPFGMLFISGTYYGLIFFGLIMEVIHNALISLV<br />

LAFFVVFAWDLVLSLIYGLRFVKEGDYIALDWDGQ<br />

FPDCYGLFASTCLSAVIWTYTDSLLLGLIVPVIIVFL<br />

GKQLMRGLYEKIKS<br />

11/21/2005 82


Proteomic applications of mass spectrometry:<br />

AGAATVKENSSTRVKHCAAGAAWKAGGARERAAKTVAAKATVGGGRV<br />

MS<br />

Sequence MW<br />

• AGAATVK 617.3623<br />

• ENSSTR 693.3168<br />

•VK 246.1818<br />

• HCAAGAAWK 914.4307<br />

• AGGAR 431.2367<br />

•ER 304.1621<br />

• AAK 289.1876<br />

• TVAAK 489.3037<br />

• ATVGGGR 617.3371<br />

MW: 4551<br />

11/21/2005 83


MALDI-TOF: pepti<strong>de</strong> mass fingerprinting<br />

<strong>Mass</strong> 1<br />

<strong>Mass</strong> 2<br />

<strong>Mass</strong> 3<br />

<strong>Mass</strong> 4<br />

Nucleoti<strong>de</strong> or Protein<br />

Database<br />

>143B_BOVIN 14-3-3 PROTEIN BETA<br />

...<br />

MDKSELVQKAKLAEQAERYDDMAAM<br />

KAVTEQGHELSNEERNLLSVAYKNYG<br />

ARRSSWRVISSIEQKTERNEKKQQMG<br />

KEYREKIEAELQDICNVLQLLDK ...<br />

1 9.58 4/6 (66%) 4 3 HOMO SAPIENS 1308066 W28118 42c2 Human retina c<br />

randomly primed sublibrary<br />

sapiens cDNA.<br />

2 9.28 4/6 (66%) 4 6 HOMO SAPIENS 1308575 W28627 49d10 Human retina<br />

randomly primed sublibrary Ho<br />

sapiens cDNA.<br />

11/21/2005 84


Protein i<strong>de</strong>ntification by mass spectrometry<br />

tryptic digest<br />

500 1200 1900 2600 3300<br />

<strong>Mass</strong> (m/z)<br />

11/21/2005 85<br />

♦<br />

630.39 1022.48<br />

663.30<br />

1147.58<br />

♦<br />

♦<br />

internal calibration pepti<strong>de</strong><br />

1424.61<br />

♦<br />

1275.66<br />

1446.72<br />

♦<br />

2862.19<br />

2990.29


Tryptic pepti<strong>de</strong> fingerprint of MEF2C (TFP or PMF)<br />

630.39 1022.48<br />

663.30<br />

♦<br />

1147.58<br />

♦<br />

1275.66<br />

1424.61<br />

♦<br />

1446.73<br />

Pepti<strong>de</strong> Measured Calculated ∆<br />

(M+H) (M+H)<br />

6-10 630.388 630.39 0.002<br />

11-15 663.301 663.314 0.013<br />

80-89 1147.580 1147.596 0.016<br />

80-90 1275.659 1275.691 0.032<br />

120-130 1318.613 1318.668 0.055<br />

240-251 1327.613 1327.625 0.012<br />

69-79 1424.612 1424.608 0.004<br />

119-130 1446.728 1446.763 0.035<br />

92-118 2862.191 2862.176 0.015<br />

92-119 2990.294 2990.271 0.023<br />

2862.19<br />

2990.29<br />

500 1200 1900 2600 3300<br />

Ma s s (m/z)<br />

11/21/2005 ♦ internal calibration pepti<strong>de</strong><br />

86<br />


MEF2A<br />

MGRKKIQITRIMDERNRQVTFTKRKFGLMKKAYELSVLCDCEIALIIFNSSNKLFQYA<br />

STDMDKVLLKYTEYNEPHESRTNSDIVEALNKKEHRGCDSPDPDTSYVLTPHTEEKY<br />

KKINEEFDNMMRNHKIAPGLPPQNFSMSVTVPVTSPNALSYTNPGSSLVSPSLAASST<br />

LTDSSMLSPPQTTLHRNVSPGAPQRPPSTGNAGGMLSTTDLTVPNGAGSSPVGNGFV<br />

NSRASPNLIGATGANSLGKVMPTKSPPPPGGGNLGMNSRKPDLRVVIPPSSKGMMPP<br />

LSEEEELELNTQRISSSQATQPLATPVVSVTTPSLPPQGLVYSAMPTAYNTDYSLTSAD<br />

LSALQGFNSPGMLSLGQVSAWQQHHLGQAALSSLVAGGQLSQGSNLSINTNQNISIK<br />

SEPISPPRDRMTPSGFQQQQQQQQQQQPPPPPQPQPQPPQPQPRQEMGRSPVDSLSSSS<br />

SSYDGSDREDPRGDFHSPIVLGRPPNTEDRESPSVKRMRMDAWVT<br />

The masses of these tryptic pepti<strong>de</strong>s that were<br />

observed in the mass spectrum<br />

11/21/2005 87


Why we can confi<strong>de</strong>ntly<br />

assign this protein as MEF2C<br />

# of matching pepti<strong>de</strong>s<br />

MEF2C 10<br />

(correct i<strong>de</strong>ntification)<br />

MEF2A 6<br />

(closely related protein)<br />

albumin 0<br />

(unrelated protein)<br />

11/21/2005 88


Database Searching<br />

WWW Sites:<br />

Matrix Science, http://www.matrixscience.com<br />

UCSF, http://prospector.ucsf.edu<br />

EMBL, http://www.mann.embl-hei<strong>de</strong>lberg.<strong>de</strong><br />

• continual updates<br />

• well maintained<br />

• free<br />

• similar searches<br />

11/21/2005 89


Tan<strong>de</strong>m mass spectrometry<br />

11/21/2005 90


AGAATVKENSSTRVKHCAAGAAWKAGGARERAAKTVAAKATVGGGRV<br />

MS<br />

Sequence MW<br />

• AGAATVK 617.3623<br />

• ENSSTR 693.3168<br />

•VK 246.1818<br />

• HCAAGAAWK 914.4307<br />

• AGGAR 431.2367<br />

•ER 304.1621<br />

• AAK 289.1876<br />

• TVAAK 489.3037<br />

• ATVGGGR 617.3371<br />

MS/MS<br />

MW: 4551<br />

147.11 y1 383.15 b3 483.21 a5<br />

603.33 y6 839.36 b8 284.12 a2<br />

404.23 y3 511.21 b5 625.29 a7<br />

848.41 y8 312.11 b2 426.19 a4<br />

532.29 y5 653.28 b7<br />

333.19 y2 454.19 b4<br />

554.25 a6 674.36 y7<br />

355.16 a3 475.27 y4<br />

582.25 b6 811.37 a8<br />

11/21/2005 91


A single pepti<strong>de</strong> can be selected with one MS<br />

and sequenced by a second MS<br />

630.39 1022.48<br />

663.30<br />

♦<br />

1147.58<br />

♦<br />

1275.66<br />

1424.61<br />

♦<br />

1446.72<br />

2862.19<br />

2990.29<br />

500 1200 1900 2600 3300<br />

11/21/2005 <strong>Mass</strong> (m/z)<br />

92<br />


Select: TNSDIVETIR m n<br />

R m 1<br />

IR m 2<br />

TIR m 3<br />

ETIR m 4<br />

VETIR m 5<br />

NSDIVETLR m 9<br />

11/21/2005 93<br />

I<br />

T<br />

E<br />

V<br />

N


NH2<br />

CH<br />

R1<br />

x2 y2 z2 x1 y1 z1<br />

O<br />

C NH CH C NH CH C OH<br />

R2<br />

R3<br />

11/21/2005 94<br />

O<br />

a1 b1 c1 a2 b2 c2<br />

O


The pepti<strong>de</strong> fragments give us sequence<br />

I /<br />

information<br />

/ L<br />

11/21/2005 95


Tan<strong>de</strong>m mass spectrometry:<br />

<strong>de</strong> <strong>de</strong> novo novo sequencing<br />

11/21/2005 96


The 9 step strategy for manual interpretation of MS/MS spectra:<br />

1. Inspect the low-mass region for immonium ions<br />

2. Inspect the low-mass region for the b 2 -ion and a 2 -ion combo<br />

3. Inspect the low-mass region for the y 1 -ion<br />

4. Inspect the high-mass region for the y n-2 -ion, from this try to<br />

i<strong>de</strong>ntify the y n-1-ion<br />

5. Extend the y-ion series toward lower m/z<br />

6. Extend the b-ion series toward higher m/z<br />

7. Calculate the mass of the pepti<strong>de</strong><br />

8. Check that the amino acid content agrees with the immonium<br />

ions observed. Consi<strong>de</strong>r the charge state and whether there is an<br />

internal H, K, or R<br />

9. Attempt to i<strong>de</strong>ntify all ions in the spectrum<br />

11/21/2005 97


Back<br />

11/21/2005 98


The 9 step strategy for manual interpretation of MS/MS spectra:<br />

1. Inspect the low-mass region for immonium ions<br />

2. Inspect the low-mass region for the b 2 -ion and a 2 -ion combo<br />

3. Inspect the low-mass region for the y 1 -ion<br />

4. Inspect the high-mass region for the y n-2 -ion, from this try to<br />

i<strong>de</strong>ntify the y n-1-ion<br />

5. Extend the y-ion series toward lower m/z<br />

6. Extend the b-ion series toward higher m/z<br />

7. Calculate the mass of the pepti<strong>de</strong><br />

8. Check that the amino acid content agrees with the immonium<br />

ions observed. Consi<strong>de</strong>r the charge state and whether there is an<br />

internal H, K, or R<br />

9. Attempt to i<strong>de</strong>ntify all ions in the spectrum<br />

11/21/2005 99


400<br />

300<br />

200<br />

100<br />

0<br />

Step 1: Immonium ions<br />

m/z 86<br />

Imm of L/I<br />

100 200 300 400 500 600 700 800 900 1000 1100<br />

m/z<br />

11/21/2005 File: CID 612.8380(2+), Date: 11/09/2002 14:18<br />

100<br />

Resolution: 0.6 ns, Display bin: 115.0 ns, Starts: 6886


400<br />

300<br />

200<br />

100<br />

0<br />

Step 2: b 2 and a 2 -ions<br />

m/z 215<br />

b 2 of (D/V) or ((L/I)/T)<br />

-28 Da = a 2<br />

100 200 300 400 500 600 700 800 900 1000 1100<br />

m/z<br />

11/21/2005 File: CID 612.8380(2+), Date: 11/09/2002 14:18<br />

101<br />

Resolution: 0.6 ns, Display bin: 115.0 ns, Starts: 6886


400<br />

300<br />

200<br />

100<br />

0<br />

Step 3: y 1 -ion<br />

m/z 175 = y 1 of R<br />

100 200 300 400 500 600 700 800 900 1000 1100<br />

m/z<br />

11/21/2005 File: CID 612.8380(2+), Date: 11/09/2002 14:18<br />

102<br />

Resolution: 0.6 ns, Display bin: 115.0 ns, Starts: 6886


400<br />

300<br />

200<br />

100<br />

0<br />

Step 4: Find y n-2 and y n-1<br />

Difference b/w y n-2 and y n-1 ions is 101 Da<br />

�<strong>Mass</strong> of T, therefore N-term is I/L followed<br />

by T.<br />

100 200 300 400 500 600 700 800 900 1000 1100<br />

m/z<br />

11/21/2005 File: CID 612.8380(2+), Date: 11/09/2002 14:18<br />

103<br />

Resolution: 0.6 ns, Display bin: 115.0 ns, Starts: 6886<br />

y n-2<br />

y n-1


400<br />

300<br />

200<br />

100<br />

0<br />

-R<br />

Step 5: Find y-ion series<br />

-I/L<br />

-P<br />

-S<br />

-S<br />

-G<br />

100 200 300 400 500 600 700 800 900 1000 1100<br />

m/z<br />

11/21/2005 File: CID 612.8380(2+), Date: 11/09/2002 14:18<br />

104<br />

Resolution: 0.6 ns, Display bin: 115.0 ns, Starts: 6886<br />

-Y<br />

-G<br />

-S<br />

-S<br />

-T<br />

-I/L


400<br />

300<br />

200<br />

100<br />

0<br />

Step 6: Find b-ion series<br />

I/L,T<br />

+S<br />

+S<br />

+G<br />

100 200 300 400 500 600 700 800 900 1000 1100<br />

m/z<br />

11/21/2005 File: CID 612.8380(2+), Date: 11/09/2002 14:18<br />

105<br />

Resolution: 0.6 ns, Display bin: 115.0 ns, Starts: 6886<br />

+Y<br />

+G<br />

+S


Step 7: Total Sequence <strong>Mass</strong>: 1224 Da<br />

Estimated Sequence:<br />

I/L,T,S,S,G,Y,G,S,S,P,I/L,R<br />

Estimated Sequence mass:<br />

1224 Da!<br />

Step 8: We see I/L imm in the low mass region<br />

Step 9: Don’t have time now…<br />

11/21/2005 106


400<br />

300<br />

200<br />

100<br />

0<br />

Pepti<strong>de</strong> sequence:<br />

LTSSGYGSSPLR<br />

*<br />

y 1 , R H+<br />

b 2 , H+ LT<br />

*<br />

y 2 , LR H+<br />

b 4 , H+ LTSS<br />

y 3 , PLR H+<br />

b 3 , H+ LTS<br />

Precursor ion<br />

y 4 , SPLR H+<br />

b 5 , H+ LTSSG<br />

b 6 , H+ LTSSGY<br />

y 6 , GSSPLR H+<br />

y 5 , SSPLR H+<br />

b 7 , H+ LTSSGYG<br />

y 8 , GYGSSPLR H+<br />

y 10 , SSGYGSSPLR H+<br />

y7 , YGSSPLRH+ y9 , SGYGSSPLRH+ b 8 , H+ LTSSGYGS<br />

y 11 , TSSGYGSSPLR H+<br />

100 200 300 400 500 600<br />

m/z<br />

700 800 900 1000 1100<br />

11/21/2005 107


Tan<strong>de</strong>m mass spectrometry:<br />

Sequence tag<br />

11/21/2005 108


Relative Abundance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

E<br />

Fribrinopepti<strong>de</strong> A<br />

A<br />

X<br />

F<br />

D<br />

400 600 800 1000 1200 1400 1600<br />

m/z<br />

11/21/2005 109<br />

G<br />

YADSGEGDFLAEGGGVR<br />

E<br />

G S<br />

D


I<strong>de</strong>ntification of Proteins by MS/MS Spectra and Sequence tag<br />

80<br />

40<br />

Pepti<strong>de</strong> mass<br />

(<strong>Mass</strong> 1 ) GEG (<strong>Mass</strong> 2 )<br />

0<br />

400 600 800 1000 1200 1400 1600<br />

m/z<br />

11/21/2005 110<br />

G E<br />

G<br />

Nucleoti<strong>de</strong> or Protein<br />

Database<br />

>143B_BOVIN 14-3-3 PROTEIN BETA<br />

...<br />

MDKSELVQKAKLAEQAERYDDMAAM<br />

KAVTEQGHELSNEERNLLSVAYKNYG<br />

ARRSSWRVISSIEQKTERNEKKQQMG<br />

KEYREKIEAELQDICNVLQLLDK ...


Relative Intensity<br />

TOF Binary data from:“536_3_3+?cal”<br />

100<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

201.1 201.1<br />

200 40<br />

0<br />

540.3<br />

Sequence Tag<br />

689.9<br />

814.4<br />

G<br />

600 80<br />

m/z0<br />

H<br />

VEADIAGHGQEVLIR<br />

11/21/2005 111<br />

1008.5<br />

1009.0 1195.7<br />

1000 120<br />

0<br />

140<br />

0<br />

160<br />

0<br />

200 400 600 800 1000 1200 1400 1600<br />

m/z, amu<br />

G<br />

A<br />

I<br />

7.87e2


Tan<strong>de</strong>m mass spectrometry:<br />

No interpretation<br />

11/21/2005 112


80<br />

40<br />

0<br />

I<strong>de</strong>ntification of Proteins by MS/MS Spectra and SEQUEST<br />

Pepti<strong>de</strong> 1<br />

Pepti<strong>de</strong> mass<br />

low mass ions<br />

400 600 800 1000 1200 1400 1600<br />

m/z<br />

Correlation Analysis<br />

by SEQUEST<br />

Theoretical <strong>Mass</strong><br />

Spectrum<br />

11/21/2005 113<br />

% RA<br />

Nucleoti<strong>de</strong> or Protein<br />

Database<br />

>143B_BOVIN 14-3-3 PROTEIN BETA<br />

...<br />

MDKSELVQKAKLAEQAERYDDMAAM<br />

KAVTEQGHELSNEERNLLSVAYKNYG<br />

ARRSSWRVISSIEQKTERNEKKQQMG<br />

KEYREKIEAELQDICNVLQLLDK ...<br />

m/z


Tan<strong>de</strong>m mass spectrometry:<br />

Sample introduction<br />

11/21/2005 114


A)<br />

B)<br />

C)<br />

∆p<br />

Sample introduction: nanospray<br />

∆p<br />

HV<br />

11/21/2005 115


opening of 1 µm<br />

Pd / Au layer<br />

Nanospray Probe<br />

contains 1-2 µL of sample<br />

11/21/2005 116


A)<br />

B)<br />

C)<br />

HPLC/<br />

autosampler<br />

Sample introduction: HPLC<br />

+ 1 kV<br />

11/21/2005 117


165 minute run<br />

2 hr gradient<br />

1 sec survey scan<br />

1 sec MS/MS scan<br />

1 sec MS/MS scan<br />

1 sec MS/MS scan<br />

1 sec MS/MS scan<br />

11/21/2005 118

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!