29.01.2013 Views

Precise Orbit Determination of Global Navigation Satellite System of ...

Precise Orbit Determination of Global Navigation Satellite System of ...

Precise Orbit Determination of Global Navigation Satellite System of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 6 Algorithms <strong>of</strong> <strong>Orbit</strong> <strong>Determination</strong> <strong>of</strong> IGSO, GEO and MEO <strong>Satellite</strong>s<br />

ϖ<br />

x<br />

ϖ<br />

ϖ<br />

k = Φ k,<br />

k−1<br />

xk<br />

−1<br />

+ Γk,<br />

k −1w<br />

k−1<br />

69<br />

(6-14)<br />

The observation equation is<br />

yk H k xk<br />

Gk<br />

z k ε k<br />

ϖ ϖ ϖ ϖ<br />

= + +<br />

(6-15)<br />

where<br />

ϖ<br />

xk ϖ<br />

yk ϖ<br />

zk n dimensional signal state vector such as satellite orbit and dynamic parameters<br />

m dimensional observation vector<br />

p dimensional systematic parameter vector like tracking station coordinates, etc.<br />

Φ kk , −1 n×n dimensional state transition matrix<br />

ϖ<br />

wk dynamic system noise vector<br />

ϖ<br />

ε k observation noise vector<br />

Gk Γkk , −1<br />

Hk m×p dimensional coefficient matrix <strong>of</strong> non-random parameters<br />

coefficient matrix <strong>of</strong> dynamic system noise vector<br />

m×n dimensional observation coefficient matrix<br />

The a priori statistic information <strong>of</strong> ϖ~ x0 is given by the expectancy Ex { }<br />

ϖ 0<br />

ϖ 0 0<br />

and the covariance Dx { } = P .<br />

Obviously, according to the assumption in Eq.(6-14) and (6-15), ϖ xk is a random parameter vector and ϖ zk is a<br />

non-random parameter vector. In order to solve the problem, Eq.(6-14) and Eq.(6-15) can be rewritten in the<br />

following matrix form:<br />

ϖ<br />

ϖ ϖ<br />

�y<br />

k � �H<br />

k Gk<br />

��x<br />

k � � ε k �<br />

� ϖ � = � ��<br />

ϖ � + � ϖ �<br />

(6-16)<br />

�x<br />

k � � I x 0 ��z<br />

k � ��<br />

ε xk<br />

��<br />

where ϖ x k is assumed to be pseudo-observation, ϖ ε xk is the pseudo-observation noise.<br />

The a priori values ϖ xk ′ and covariance matrix Pxk ′ can be approximated from Eq.(6-14). The results are<br />

ϖ ~ ϖ<br />

x = Φ − x −<br />

k′<br />

k,<br />

k 1 k 1<br />

P′<br />

xk<br />

= Φ<br />

T<br />

T<br />

k,<br />

k−1<br />

Px<br />

Φ k k k k Q<br />

k 1 , −1<br />

+ Γ , −1<br />

k −1Γ<br />

−<br />

k,<br />

k −1<br />

(6-17)<br />

(6-18)<br />

where ϖ~ x k−1 is the estimator <strong>of</strong> ϖ x k−1 at the epoch <strong>of</strong> k −1; P is the covariance matrix <strong>of</strong> xk −1 ϖ~ x k−1 .<br />

T<br />

Qk − 1 cov( wk<br />

−1,<br />

wk<br />

−1)<br />

=<br />

ϖ ϖ<br />

is the system state noise covariance at k −1.<br />

Covariance matrix <strong>of</strong> the observation is<br />

�Rk<br />

0 �<br />

R = � �<br />

� ′<br />

�<br />

0 Pxk<br />

��<br />

where Rk is the covariance matrix <strong>of</strong> observation vector ϖ yk ; Pxk ′ represents a priori information <strong>of</strong> system<br />

parameters.<br />

Using the least squares method, we can obtain<br />

�<br />

~ ϖ<br />

� �<br />

��<br />

T<br />

xk<br />

H k<br />

�~<br />

ϖ � = ��<br />

T<br />

��<br />

z k ��<br />

�� ��<br />

Gk<br />

��<br />

−1<br />

I x R<br />

k k<br />

��<br />

0 ��<br />

��<br />

��H<br />

k<br />

−1<br />

��<br />

P′<br />

��<br />

��<br />

I x x<br />

k k<br />

−1<br />

G ��<br />

� � T<br />

k H k<br />

��<br />

�<br />

0<br />

T<br />

��<br />

�� ��<br />

Gk<br />

��<br />

−1<br />

I x R<br />

k k<br />

��<br />

0 ��<br />

��<br />

0<br />

�<br />

ϖ<br />

0 �y<br />

k �<br />

−1<br />

�<br />

′<br />

� ϖ �<br />

Px<br />

��<br />

′<br />

�<br />

x<br />

k k �<br />

� T −1<br />

−1<br />

H k Rk<br />

H k + Px′<br />

k = � T −1<br />

��<br />

Gk<br />

Rk<br />

H k<br />

−1<br />

T −1<br />

� � T<br />

H k Rk<br />

Gk<br />

H k<br />

T −1<br />

� � T<br />

Gk<br />

Rk<br />

Gk<br />

��<br />

��<br />

Gk<br />

��<br />

−1<br />

I x R<br />

k k<br />

��<br />

0 ��<br />

��<br />

0<br />

�<br />

ϖ<br />

0 �y<br />

k �<br />

−1<br />

�<br />

′<br />

� ϖ �<br />

Px<br />

��<br />

�x<br />

k k �<br />

� T −1<br />

−1<br />

H k Rk<br />

H k + Px′<br />

k<br />

= � T −1<br />

��<br />

Gk<br />

Rk<br />

H k<br />

−1<br />

T −1<br />

� � T −1<br />

ϖ −1<br />

ϖ<br />

H<br />

+ ′ ′ �<br />

k Rk<br />

Gk<br />

H k Rk<br />

yk<br />

Px<br />

x<br />

k k<br />

T −1<br />

� � T −1<br />

ϖ �<br />

Gk<br />

Rk<br />

Gk<br />

��<br />

��<br />

Gk<br />

Rk<br />

yk<br />

��<br />

ϖ ϖ<br />

ϖ ϖ<br />

Here, x′ , z′<br />

are a priori unbiased estimates <strong>of</strong> x , z respectively.<br />

k k<br />

k k<br />

(6-19)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!