29.01.2013 Views

Precise Orbit Determination of Global Navigation Satellite System of ...

Precise Orbit Determination of Global Navigation Satellite System of ...

Precise Orbit Determination of Global Navigation Satellite System of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 6 Algorithms <strong>of</strong> <strong>Orbit</strong> <strong>Determination</strong> <strong>of</strong> IGSO, GEO and MEO <strong>Satellite</strong>s<br />

Φ<br />

kk , − = 1<br />

�<br />

1 2<br />

�<br />

�<br />

1 0 0 ∆t 0 0 ∆t<br />

0 0 a110 , a111 , Λ a1,<br />

n<br />

2<br />

�<br />

�<br />

1<br />

�<br />

2<br />

� 0 1 0 0 ∆t 0 0 ∆t<br />

0 a210 , a211 , Λ a2,<br />

n �<br />

�<br />

2<br />

�<br />

�<br />

1 2<br />

0 0 1 0 0 ∆t 0 0 ∆t<br />

a310 , a311 , Λ a �<br />

3,<br />

n<br />

�<br />

2<br />

�<br />

� 0 0 0 1 0 0 ∆t<br />

0 0 a410 , a411 , Λ a4,<br />

n �<br />

�<br />

�<br />

�<br />

0 0 0 0 1 0 0 ∆t<br />

0 a510 , a511 , Λ a5,<br />

n �<br />

� 0 0 0 0 0 1 0 0 ∆t<br />

a610 , a611 , Λ a � 6,<br />

n<br />

�<br />

�<br />

� 0 0 0 0 0 0 1 0 0 a710 , a711 , Λ a7,<br />

n �<br />

� 0 0 0 0 0 0 0 1 0 a810 , a811 , Λ a �<br />

8,<br />

n<br />

�<br />

�<br />

� 0 0 0 0 0 0 0 0 1 a910 , a911 , Λ a9,<br />

n �<br />

�<br />

0 0 0 0 0 0 0 0 0 a10,<br />

10 0 Λ 0<br />

�<br />

�<br />

�<br />

� 0 0 0 0 0 0 0 0 0 0 a11,<br />

11 Λ 0 �<br />

�<br />

�<br />

�<br />

Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ<br />

�<br />

�<br />

� 0 0 0 0 0 0 0 0 0 0 0 Λ a � nn , �<br />

where<br />

∆t = tk −tk−1 a110 , , Λ , ann are coefficients <strong>of</strong> ∆pi .<br />

The system and observation equations for Kalman filter are<br />

ϖ ϖ ϖ<br />

xk = Φk, k−1xk−1 + Γk,<br />

k−1wk� ϖ ϖ ϖ �<br />

yk = Hkxk + ε k �<br />

Then Kalman filter which can be used in kinematic orbit determination is<br />

ϖ ϖ<br />

x′ =<br />

�<br />

k k k− xk−<br />

�<br />

T<br />

P′ = +<br />

�<br />

k k k− Pk− k k−<br />

kk− Qk−<br />

kk−<br />

�<br />

− �<br />

K = P′ H H P′ H + R<br />

�<br />

ϖ ϖ ϖ<br />

�<br />

x = x′ + K y − H x′<br />

�<br />

P = I− K H P′<br />

�<br />

��<br />

T<br />

~<br />

Φ , 1 1<br />

Φ , 1 1Φ , 1 Γ , 1 1Γ , 1<br />

T<br />

T 1<br />

k k k ( k k k k )<br />

~<br />

k k k( k k k)<br />

k ( k k) k<br />

where<br />

ϖ<br />

xk ϖ<br />

wk ϖ<br />

y k<br />

ϖ<br />

ε k<br />

system status vector at epoch k<br />

process noise at epoch k<br />

vector <strong>of</strong> observations<br />

measurement noise<br />

Φ kk , −1 state transition matrix between epochs kk , −1<br />

, −1<br />

Gkk , −1 system noise matrix between epochs kk<br />

Hk design matrix<br />

Pk′ predicted covariance matrix at epoch k<br />

Pk improved covariance matrix at epoch k<br />

K k<br />

ϖ<br />

xk′ Kalman filter gain matrix<br />

prediction <strong>of</strong> ϖ ϖ~<br />

xk xk at epoch k<br />

estimation <strong>of</strong> ϖ xk based on the measurements ϖ y1 to ϖ yk−1 78<br />

(6-79)<br />

(6-80)<br />

(6-81)<br />

Because geostationary satellite moves very slowly relative to the Earth, the polynomial with second order is<br />

precise enough to be used in the state transition matrix <strong>of</strong> Eq.(6-79).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!