29.01.2013 Views

Precise Orbit Determination of Global Navigation Satellite System of ...

Precise Orbit Determination of Global Navigation Satellite System of ...

Precise Orbit Determination of Global Navigation Satellite System of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 6 Algorithms <strong>of</strong> <strong>Orbit</strong> <strong>Determination</strong> <strong>of</strong> IGSO, GEO and MEO <strong>Satellite</strong>s<br />

6.3.1 Batch Processing<br />

<strong>Precise</strong> satellite orbit determination is usually post-processed in batch mode, i.e. all observation data available in<br />

a tracking session is collected and processed together. Using this mode the highest accuracy <strong>of</strong> orbit<br />

determination can be achieved. The basic method can be briefly described as follows.<br />

Assuming that the satellite state vector is ϖ x = {, x y, z,&, x y&, z&}<br />

, the state transition matrix is Φ( ti, ti−1<br />

) and the<br />

observation is ρ i . If the observation set is available in the following forms,<br />

L = { ρ ( t ), ρ ( t ),..., ρ ( t ); ρ ( t ), ρ ( t ),..., ρ ( t );...; ρ ( t ), ρ ( t ),..., ρ ( t )}<br />

then<br />

L<br />

L<br />

L<br />

1<br />

2<br />

k<br />

1 1 2 1 n 1 1 2 2 2 n 2 1 k 2 k n k ,<br />

� ∆ρ1(<br />

t1)<br />

�<br />

�<br />

∆ρ<br />

2( t2)<br />

�<br />

= � �<br />

ϖ ϖ<br />

= H1Φ( t1, t0) x0<br />

+ ε 1<br />

� Λ �<br />

� �<br />

�∆ρ<br />

n ( t1<br />

) �<br />

�∆ρ<br />

1( t2)<br />

�<br />

�<br />

∆ρ<br />

2( t2)<br />

�<br />

= � �<br />

ϖ ϖ<br />

= H2Φ( t2, t0) x0<br />

+ ε 2<br />

� Λ �<br />

� �<br />

�∆ρ<br />

n ( t2<br />

) �<br />

...............<br />

�∆ρ<br />

1(<br />

tk<br />

) �<br />

�<br />

∆ρ<br />

t<br />

�<br />

k<br />

= � 2 ( )<br />

�<br />

ϖ ϖ<br />

= HkΦ( tk, t0) x0<br />

+ ε k<br />

� Λ �<br />

� �<br />

�∆ρ<br />

n ( tk<br />

) �<br />

80<br />

(6-85)<br />

(6-86)<br />

(6-87)<br />

where<br />

Li<br />

the sub-observation matrix at epoch i,<br />

∆ρ i( t j)<br />

the difference between computation and observation at tracking station i and<br />

Hi<br />

epoch tj,<br />

the observation coefficient at epoch i,<br />

Φ( ti, t0)<br />

ϖ<br />

x0 the state transition matrix between epoch ti and t0,<br />

the initial state vector including initial orbit parameters and initial ambiguities.<br />

ϖ<br />

x 0 can be solved using least-squares solution<br />

�L1<br />

� � H1Φ( t1, t0)<br />

�<br />

ϖ �<br />

L<br />

� �<br />

H t t<br />

�<br />

ϖ ϖ<br />

L = � 2 � = � 2Φ( 2, 0)<br />

�x<br />

0 + ε<br />

�...<br />

� � ... �<br />

� � � �<br />

�Lk��HkΦ(<br />

tk, t0)<br />

�<br />

ϖ ϖϖ ϖ ϖ<br />

T T<br />

H PHx + H PL = 0<br />

0<br />

ϖ ϖ ϖ ϖ ϖ<br />

T T<br />

x =−(<br />

H PH) H PL<br />

0<br />

where<br />

ϖ<br />

H<br />

� H1Φ( t1, t0)<br />

�<br />

�H<br />

t t �<br />

= � 2Φ( 2, 0)<br />

�<br />

� ... �<br />

� �<br />

�HkΦ(<br />

tk, t0)<br />

�<br />

(6-88)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!