19.03.2018 Views

linear-guest

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8.2 Elementary Matrices and Determinants 181<br />

Figure 8.5: Determinants measure if a matrix is invertible.<br />

Corollary 8.2.3. Any elementary matrix E i j, R i (λ), S i j(µ) is invertible, except<br />

for R i (0). In fact, the inverse of an elementary matrix is another elementary<br />

matrix.<br />

To obtain one last important result, suppose that M and N are square<br />

n × n matrices, with reduced row echelon forms such that, for elementary<br />

matrices E i and F i ,<br />

M = E 1 E 2 · · · E k RREF(M) ,<br />

and<br />

N = F 1 F 2 · · · F l RREF(N) .<br />

If RREF(M) is the identity matrix (i.e., M is invertible), then:<br />

det(MN) = det(E 1 E 2 · · · E k RREF(M)F 1 F 2 · · · F l RREF(N))<br />

= det(E 1 E 2 · · · E k IF 1 F 2 · · · F l RREF(N))<br />

= det(E 1 ) · · · det(E k ) det(I) det(F 1 ) · · · det(F l ) det RREF(N)<br />

= det(M) det(N)<br />

Otherwise, M is not invertible, and det M = 0 = det RREF(M). Then there<br />

exists a row of zeros in RREF(M), so R n (λ) RREF(M) = RREF(M) for<br />

any λ. Then:<br />

det(MN) = det(E 1 E 2 · · · E k RREF(M)N)<br />

= det(E 1 ) · · · det(E k ) det(RREF(M)N)<br />

= det(E 1 ) · · · det(E k ) det(R n (λ) RREF(M)N)<br />

= det(E 1 ) · · · det(E k )λ det(RREF(M)N)<br />

= λ det(MN)<br />

181

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!