19.03.2018 Views

linear-guest

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

66 Systems of Linear Equations<br />

Example 32 (Non-pivot variables determine the gemometry of the solution set)<br />

⎛ ⎞<br />

⎛<br />

⎞ x<br />

1 0 1 −1 1<br />

⎛ ⎞ ⎧<br />

⎝0 1 −1 1⎠<br />

⎜x 2<br />

1 ⎨ 1x 1 + 0x 2 + 1x 3 − 1x 4 = 1<br />

⎟<br />

⎝x 0 0 0 0 3<br />

⎠ = ⎝1⎠ ⇔ 0x 1 + 1x 2 − 1x 3 + 1x 4 = 1<br />

⎩<br />

0 0x<br />

x 1 + 0x 2 + 0x 3 + 0x 4 = 0<br />

4<br />

Following the standard approach, express the pivot variables in terms of the non-pivot<br />

variables and add “empty equations”. Here x 3 and x 4 are non-pivot variables.<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

x 1 = 1 − x 3 + x 4<br />

⎫⎪<br />

x 1 1 −1 1<br />

⎬<br />

x 2 = 1 + x 3 − x 4<br />

⇔ ⎜x 2<br />

⎟<br />

x 3 = x 3<br />

⎝<br />

⎪ x ⎭ 3<br />

⎠ = ⎜1<br />

⎟<br />

⎝0⎠ + x ⎜ 1<br />

⎟<br />

3 ⎝ 1⎠ + x ⎜−1<br />

⎟<br />

4 ⎝ 0⎠<br />

x 4 = x 4 x 4 0 0 1<br />

The preferred way to write a solution set S is with set notation;<br />

⎧⎛<br />

⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

⎫<br />

x 1 1 −1 1<br />

⎪⎨<br />

S = ⎜x 2<br />

⎟<br />

⎝x ⎪⎩ 3<br />

⎠ = ⎜1<br />

⎟<br />

⎝0⎠ + µ ⎜ 1<br />

⎟<br />

1 ⎝ 1⎠ + µ ⎜−1<br />

⎪⎬<br />

⎟<br />

2 ⎝ 0⎠ : µ 1, µ 2 ∈ R .<br />

⎪⎭<br />

x 4 0 0 1<br />

Notice that the first two components of the second two terms come from the non-pivot<br />

columns. Another way to write the solution set is<br />

where<br />

S = { x P + µ 1 x H 1 + µ 2 x H 2 : µ 1 , µ 2 ∈ R } ,<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

1<br />

−1<br />

1<br />

x P = ⎜1<br />

⎟<br />

⎝0⎠ , xH 1 = ⎜ 1<br />

⎟<br />

⎝ 1⎠ , xH 2 = ⎜−1<br />

⎟<br />

⎝ 0⎠ .<br />

0<br />

0<br />

1<br />

Here x P is a particular solution while x H 1 and xH 2<br />

The solution set forms a plane.<br />

2.5.3 Solutions and Linearity<br />

are called homogeneous solutions.<br />

Motivated by example 32, we say that the matrix equation Mx = v has<br />

solution set {x P + µ 1 x H 1 + µ 2 x H 2 | µ 1 , µ 2 ∈ R}. Recall that matrices are <strong>linear</strong><br />

operators. Thus<br />

M(x P + µ 1 x H 1 + µ 2 x H 2 ) = Mx P + µ 1 Mx H 1 + µ 2 Mx H 2 = v ,<br />

66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!