19.03.2018 Views

linear-guest

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

184 Determinants<br />

7. Show that if M is a 3 × 3 matrix whose third row is a sum of multiples<br />

of the other rows (R 3 = aR 2 + bR 1 ) then det M = 0. Show that the<br />

same is true if one of the columns is a sum of multiples of the others.<br />

8. Calculate the determinant below by factoring the matrix into elementary<br />

matrices times simpler matrices and using the trick<br />

det(M) = det(E −1 EM) = det(E −1 ) det(EM) .<br />

Explicitly show each ERO matrix.<br />

⎛<br />

2 1<br />

⎞<br />

0<br />

det ⎝4 3 1⎠<br />

2 2 2<br />

( ) ( )<br />

a b<br />

x y<br />

9. Let M = and N = . Compute the following:<br />

c d<br />

z w<br />

(a) det M.<br />

(b) det N.<br />

(c) det(MN).<br />

(d) det M det N.<br />

(e) det(M −1 ) assuming ad − bc ≠ 0.<br />

(f) det(M T )<br />

(g) det(M + N) − (det M + det N). Is the determinant a <strong>linear</strong> transformation<br />

from square matrices to real numbers? Explain.<br />

( ) a b<br />

10. Suppose M = is invertible. Write M as a product of elementary<br />

row matrices times<br />

c d<br />

RREF(M).<br />

11. Find the inverses of each of the elementary matrices, E i j, R i (λ), S i j(λ).<br />

Make sure to show that the elementary matrix times its inverse is actually<br />

the identity.<br />

12. Let e i j denote the matrix with a 1 in the i-th row and j-th column<br />

and 0’s everywhere else, and let A be an arbitrary 2 × 2 matrix. Compute<br />

det(A + tI 2 ). What is the first order term (the t 1 term)? Can you<br />

184

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!