31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

110 Solution to the Helmholtz and wave equations<br />

and s<strong>in</strong>ce Ψ 1 must satisfy ∇×∇×Ψ 1 = kS 2 Ψ 1, then<br />

( )<br />

[<br />

∂ψ<br />

∇ − ˆk ∇ 2 ψ = kS<br />

2 ψ ˆk + 1 ( )] ∂ψ<br />

∂z<br />

kS 2 ∇<br />

∂z<br />

(8.115)<br />

which results <strong>in</strong> the condition ∇ 2 ψ + kS 2 ψ = 0. Similarly, the second term gives<br />

( ) ∂χ<br />

k S ∇×Ψ 2 =∇ − ˆk ∇ 2 χ (8.116)<br />

∂z<br />

so<br />

( ) ∂χ<br />

)<br />

k S ∇×∇×Ψ 2 =∇×∇ −∇×(<br />

ˆk ∇ 2 χ = kS 3 ∂z<br />

Ψ 2<br />

) ( )<br />

=−∇×(<br />

ˆk ∇ 2 χ = kS 2 ∇× ˆk χ<br />

(8.117)<br />

∇×[<br />

ˆk ( ∇ 2 χ + k 2 S χ)] = 0 (8.118)<br />

which implies ∇ 2 χ + kS 2 χ = 0. Thus, the solution provided does <strong>in</strong>deed satisfy the vector<br />

Helmholtz equation. It rema<strong>in</strong>s to verify the gauge condition:<br />

( )<br />

∇ · Ψ =∇· ψ ˆk + 1 ( ) ∂ψ<br />

kS 2 ∇ · ∇ + 1 ( )<br />

∇ · ∇× χ ˆk<br />

∂z k S<br />

( )<br />

=∇· ψ ˆk + 1 [<br />

kS 2 ∇ · ∇×∇×<br />

( ) ]<br />

ψ ˆk + ˆk ∇ 2 ψ<br />

( ) ( )<br />

=∇· ψ ˆk −∇· ψ ˆk = 0 (8.119)<br />

Hence, the solution to the vector Helmholtz equation can now be formed with the <strong>solutions</strong><br />

to the two scalar Helmholtz equations for ψ and χ, us<strong>in</strong>g for this purpose the expressions<br />

provided <strong>in</strong> the previous section:<br />

ψ(r,θ,z) = (c 1 cos nθ + c 2 s<strong>in</strong> nθ)(c 3 J n (k β r) + c 4 Y n (k β r)) ( c 5 e ikzz + c 6 e −ikzz) (8.120)<br />

χ(r,θ,z) = (d 1 cos nθ + d 2 s<strong>in</strong> nθ)(d 3 J n (k β r) + d 4 Y n (k β r)) ( d 5 e ikzz + d 6 e −ikzz) (8.121)<br />

<strong>in</strong> which the c i , d i are arbitrary constants, and<br />

√<br />

k β = kS 2 − k2 z (8.122)<br />

8.7 Elastic wave equation <strong>in</strong> cyl<strong>in</strong>drical coord<strong>in</strong>ates<br />

Consider the elastic wave equation for an isotropic medium<br />

(λ + 2µ) ∇∇ · u − µ∇ ×∇×u = ρü (8.123)<br />

Def<strong>in</strong><strong>in</strong>g<br />

ε =∇· u = volumetric stra<strong>in</strong> (8.124)<br />

Ω = 1 ∇×u = rotation vector, which satisfies ∇ · Ω = 0 (8.125)<br />

2<br />

we can write the elastic wave equation as<br />

(λ + 2µ) ∇ε − 2µ∇ ×Ω = ρü (8.126)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!