31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

176 Stiffness matrix method for layered media<br />

Table 10.6. Stiffness matrices <strong>in</strong> spherical coord<strong>in</strong>ates<br />

Note: Stiffness matrices given below are not symmetric. See Section 10.4.2 on how to<br />

make them symmetric. Also, for greater computational efficiency, solve separately for<br />

the SH and SVP degrees of freedom <strong>in</strong> K when solv<strong>in</strong>g for ũ, s<strong>in</strong>ce they are uncoupled.<br />

For def<strong>in</strong>ition of the submatrices below, see Tables 10.7 and 10.8.<br />

R e = external radius R i = <strong>in</strong>ternal radius R = generic radius<br />

˜p = Kũ K = K(R e , R i ,λ,µ,ω,m) (not a function of n)<br />

F (i)<br />

mj<br />

≡ F m (i) (R j ) H (i)<br />

mj<br />

≡ H m (i) (R j )<br />

{ }<br />

Kee K ei<br />

Spherical layer: (6 × 6) K =<br />

K ie K ii<br />

=<br />

{<br />

R<br />

2<br />

e F (1)<br />

me<br />

−R 2 i F(1) mi<br />

Re 2F(2)<br />

me<br />

−Ri 2F(2)<br />

mi<br />

}{<br />

H<br />

(1)<br />

me H (2) } −1<br />

me<br />

H (1)<br />

mi<br />

H (2)<br />

mi<br />

Solid sphere: (3 × 3) K = R 2 F m (H m) −1 Core (use j m <strong>in</strong> F m , H m )<br />

( )<br />

Cavity: (3 × 3) K =−R 2 F (2)<br />

m H (2) −1<br />

m Inf<strong>in</strong>ite external space (use h (2)<br />

m for<br />

matrices)<br />

Wavenumber–space transform:<br />

˜p(R, m, n,ω) = J ∫ { −1 π ∫ }<br />

0 s<strong>in</strong> φ 2π<br />

Ln m 0<br />

T n p(R,φ,θ,ω) dθ dφ traction per steradian<br />

ũ = K −1 ˜p<br />

∑<br />

u(R,φ,θ,ω) = ∞ m∑<br />

T n L n mũ(R, m, n,ω) = ∑ ∞ m∑<br />

ū(R, m, n,ω)<br />

m=0 n=0<br />

m=0 n=0<br />

with<br />

⎧ ⎫ ⎧ ⎫<br />

⎨ u R ⎬ ⎨ p R ⎬<br />

u = u<br />

⎩ φ<br />

⎭ = displacements, p = p<br />

⎩ φ = tractions per steradian<br />

⎭<br />

u θ p<br />

⎧ θ<br />

⎫<br />

J = π(1 + δ n0)(n + m)! ⎨ 1 0 0 ⎬<br />

(m + 1 2 )(m − n)! 0 m(m + 1) 0<br />

⎩<br />

⎭<br />

0 0 m(m + 1)<br />

The negative sign <strong>in</strong> the second term comes from the fact that external tractions are<br />

opposite <strong>in</strong> direction to the <strong>in</strong>ternal stresses at the <strong>in</strong>ner surface. Consider<strong>in</strong>g that the wave<br />

field <strong>in</strong> the layer is composed of both outgo<strong>in</strong>g and <strong>in</strong>go<strong>in</strong>g waves, and with reference to<br />

Tables 10.6, 10.7 and the results <strong>in</strong> Section 9.3, we write the displacement and traction<br />

vectors for specific <strong>in</strong>dices m, n as<br />

(<br />

)<br />

ū(R,φ,θ,ω) = T n L n m H (1)<br />

m a 1 + H (2)<br />

m a 2<br />

= T n L n m<br />

{ } { }<br />

H (1)<br />

m H (2) a 1<br />

m<br />

a 2<br />

(10.145)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!