31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

14 <strong>Fundamental</strong>s<br />

where by <strong>in</strong>spection<br />

⎧ ⎫ ⎧ ⎫ ⎧ ⎫<br />

1 0 0<br />

0 0 0<br />

0 0 0<br />

0 0 0<br />

0 1 0<br />

0 0 0<br />

⎪⎨ ⎪⎬ ⎪⎨ ⎪⎬ ⎪⎨ ⎪⎬<br />

0 0 0<br />

0 0 0<br />

0 0 1<br />

L x =<br />

, L y =<br />

, L z =<br />

0 0 0<br />

0 0 1<br />

0 1 0<br />

0 0 1<br />

0 0 0<br />

1 0 0<br />

⎪⎩ ⎪⎭ ⎪⎩ ⎪⎭ ⎪⎩ ⎪⎭<br />

0 1 0<br />

1 0 0<br />

0 0 0<br />

(1.52)<br />

Stresses<br />

σ = [σ x σ y σ z σ yz σ xz σ xy] T = stress vector (1.53)<br />

σ = Dε = constitutive law (1.54)<br />

For a fully anisotropic medium, the symmetric constitutive matrix is<br />

⎧<br />

d 11 d 12 d 13 d 14 d 15 d 16<br />

d 12 d 22 d 23 d 24 d 25 d 26<br />

⎪⎨<br />

⎫⎪ ⎬<br />

d<br />

D = 13 d 23 d 33 d 34 d 35 d 36<br />

(1.55)<br />

d 14 d 24 d 34 d 44 d 45 d 46<br />

d 15 d 25 d 35 d 45 d 55 d 56<br />

⎪⎩<br />

⎪ ⎭<br />

d 16 d 26 d 36 d 46 d 56 d 66<br />

whereas for an isotropic medium, this matrix is<br />

⎧<br />

⎫<br />

λ + 2µ λ λ 0 0 0<br />

λ λ+ 2µ λ 0 0 0<br />

⎪⎨<br />

⎪⎬<br />

λ λ λ+ 2µ 0 0 0<br />

D =<br />

0 0 0 µ 0 0<br />

0 0 0 0 µ 0<br />

⎪⎩<br />

⎪⎭<br />

0 0 0 0 0 µ<br />

(1.56)<br />

<strong>in</strong> which λ = Lamé constant, and µ = shear modulus. In this case, the stress–stra<strong>in</strong> relationship<br />

is<br />

σ j = 2µε j + λε vol ,<br />

ε vol = ε x + ε y + ε z<br />

σ yz = µε yz , σ zx = µε zx , σ xy = µε xy<br />

σ zy = σ yz , σ zx = σ xz , σ yx = σ xy<br />

(1.57)<br />

The stresses, <strong>in</strong>ertial loads, and body loads satisfy the dynamic equilibrium equation<br />

b − ρü + L T σ = 0 (1.58)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!