31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

190 Basic properties of mathematical functions<br />

11.3.2 Rodrigues’s formula<br />

P m (x) = (−1)m d m (1 − x 2 ) m<br />

,<br />

2 m m! dx m P 0 (x) = 1, P 1 (x) = x, P 2 (x) = 1 2 (3x2 − 1),...<br />

(11.31)<br />

Observe that P m (1) = 1 and P m (−1) = (−1) m .<br />

11.3.3 Trigonometric expansion (x = cos φ)<br />

[<br />

(2m − 1)!!<br />

P m (φ) = 2 cos mφ + 1 m<br />

cos(m − 2)φ<br />

(2m)!!<br />

1 (2m − 1)<br />

+ 1 × 3 m(m − 1)<br />

cos(m − 4)φ +···]<br />

1 × 2 (2m − 1) (2m − 3)<br />

(11.32)<br />

Divide the last term by 2 if miseven! Here, (2m − 1)!! = 1 × 3 × 5 ×···×(2m − 1)<br />

and (2m)!! = 2 × 4 × 6 ×···×2m. The first six Legendre polynomials <strong>in</strong> trigonometric<br />

form are<br />

P 0 = 1, P 1 = cos φ, P 2 = 1 4 (3 cos 2φ + 1) , P 3 = 1 (5 cos 3φ + 3 cos φ) (11.33)<br />

8<br />

P 4 = 1 64 (35 cos 4φ + 20 cos 2φ + 9) , P 5 = 1 (63 cos 5φ + 35 cos 3φ + 30 cos φ)<br />

128<br />

(11.34)<br />

11.3.4 Recurrence relations<br />

(m + 1)P m+1 = (2m + 1)x P m − m P m−1 (simplest way to f<strong>in</strong>d P m ) (11.35)<br />

(1 − x 2 ) dP m<br />

dx = m(P m(m + 1)<br />

m−1 − x P m) =<br />

2m + 1 (P m−1 − P m+1) (11.36)<br />

s<strong>in</strong> φ dP m<br />

dφ = m(cos φ P m(m + 1)<br />

m − P m−1) =<br />

2m + 1 (P m+1 − P m−1) (11.37)<br />

11.3.5 Orthogonality condition<br />

∫ +1<br />

−1<br />

P m (x) P n (x) dx =<br />

2<br />

2m + 1 δ mn (11.38)<br />

In its trigonometric form, with x = cos φ, the orthogonality condition is<br />

∫ π<br />

0<br />

P m (cos φ) P n (cos φ) s<strong>in</strong> φ dφ =<br />

2<br />

2m + 1 δ mn (11.39)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!