31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

136 Integral transform method<br />

9.2.2 Cyl<strong>in</strong>drically stratified media<br />

The start<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> this case is aga<strong>in</strong> the wave equation <strong>in</strong> cyl<strong>in</strong>drical coord<strong>in</strong>ates, but<br />

now we perform <strong>in</strong>stead a Fourier transform <strong>in</strong> the axial and azimuthal directions:<br />

⎧<br />

1<br />

∫ 2π ∫ +∞<br />

⎪⎨ n = 0<br />

˜b n = a n T n b(r,θ,z,ω) e −ikzz dzdθ , a n =<br />

2π<br />

(9.58)<br />

0 −∞<br />

1 ⎪⎩ n ≠ 0<br />

π<br />

b(r,θ,z,ω) = 1 ∫ { }<br />

+∞ ∞∑<br />

T n ˜b n e −ikzz dk z (9.59)<br />

2π<br />

n=0<br />

−∞<br />

∫ 2π ∫ +∞<br />

ũ n = a n T n u(r,θ,z,ω) e −ikzz dzdθ (9.60)<br />

0<br />

−∞<br />

u(r,θ,z,ω) = 1<br />

2π<br />

∫ +∞<br />

−∞<br />

{ ∞∑<br />

n=0<br />

T n ũ n<br />

}<br />

e −ikzz dk z (9.61)<br />

<strong>in</strong> which aga<strong>in</strong> the boxed equations are those commonly used. Apply<strong>in</strong>g the stated Fourier<br />

transforms <strong>in</strong> θ, z, and t to the wave equation, collect<strong>in</strong>g terms, and apply<strong>in</strong>g factors<br />

−i =− √ −1 to each of the vertical components so that u = [ ũ r ũ θ −iũ z ] and b =<br />

[ ˜b r<br />

˜b θ −i ˜b z ], we obta<strong>in</strong> the one-dimensional system of differential equations <strong>in</strong> the<br />

radial direction,<br />

⎧ ⎡<br />

⎤<br />

⎤<br />

⎨ λ + 2µ 0 0<br />

b +<br />

⎩ ρω2 I + ⎣ 0 µ 0<br />

0 0 µ<br />

⎡<br />

λ + 2µ −n(λ + µ) 0<br />

∂r + ⎣n(λ + µ) µ 0⎦ 1<br />

2 r<br />

0 0 µ<br />

⎦ ∂2<br />

⎡<br />

⎤ ⎡<br />

⎤<br />

λ + 2µ + n 2 µ −n(λ + 3µ) 0<br />

⎢<br />

− ⎣ −n(λ + 3µ) µ + n 2 ⎥<br />

(λ + 2µ) 0 ⎦ 1 µ 0 0<br />

r − ⎢<br />

⎥<br />

2 ⎣ 0 µ 0 ⎦ kz<br />

2<br />

0 0 n 2 µ 0 0 λ + 2µ<br />

⎡ ⎤<br />

⎡ ⎤ ⎫<br />

0 0 1<br />

0 0 0<br />

+ ⎣ 0 0 0⎦ ∂<br />

(λ + µ) k z<br />

∂r − ⎣ 0 0 n ⎦ (λ + µ) k ⎬<br />

z<br />

r ⎭ u = 0 (9.62)<br />

−1 0 0<br />

1 n 0<br />

In the absence of body loads (i.e., b = 0), this equation can be shown to admit <strong>solutions</strong><br />

of the form<br />

u(r, k z ,ω) = H (1)<br />

n a 1 + H (1)<br />

n a 2 (a 1 , a 2 : 3× 1 vectors of arbitrary constants) (9.63)<br />

⎧<br />

⎪⎨<br />

H (1)<br />

n =<br />

⎫<br />

( (1)) ′<br />

H αn n H(1) βn k z ( (1)) ′<br />

H βn<br />

k β r k β ⎪⎬<br />

n H(1) αn ( (1)) ′<br />

H βn n k z H (1)<br />

βn<br />

k α r<br />

k β k β r<br />

⎪⎩ − k z<br />

H αn (1) 0 H (1) ⎪⎭<br />

βn<br />

k α<br />

, H (2)<br />

n =<br />

⎧<br />

∂<br />

∂r<br />

( (2)) ′<br />

H αn n H(2) βn k z ( (2)) ′<br />

H βn<br />

k ⎪⎨<br />

β r k β ⎪⎬<br />

n H(2) αn ( (2)) ′<br />

H βn n k z H (2)<br />

βn ,<br />

k α r<br />

k β k β r<br />

⎪⎩ − k z<br />

H αn (2) 0 H (2) ⎪⎭<br />

βn<br />

k α<br />

⎫<br />

(9.64)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!