31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.3 Coord<strong>in</strong>ate systems and differential operators 7<br />

ˆk<br />

Receiver<br />

R<br />

z<br />

ˆt<br />

ˆr<br />

Figure 1.2: Cyl<strong>in</strong>drical coord<strong>in</strong>ates.<br />

Source ⊗<br />

x θ<br />

r<br />

y<br />

Direction cos<strong>in</strong>es γ 1 = r cos θ √<br />

r<br />

2<br />

+ z 2 = r cos θ<br />

R<br />

γ 2 =<br />

γ 3 =<br />

√ r s<strong>in</strong> θ<br />

r 2<br />

+ z = r s<strong>in</strong> θ<br />

2 R<br />

z<br />

√<br />

r<br />

2<br />

+ z 2 = z R<br />

(1.15d)<br />

(1.15e)<br />

(1.15f)<br />

Basis vectors ˆr = î cos θ + ĵ s<strong>in</strong> θ (1.15g)<br />

ˆt =−î s<strong>in</strong> θ + ĵ cos θ<br />

ˆk = ˆk<br />

(1.15h)<br />

(1.15i)<br />

Conversion between cyl<strong>in</strong>drical and Cartesian coord<strong>in</strong>ates<br />

u = u x î + u y ĵ + u z ˆk<br />

= u r ˆr + u θ ˆt + u z ˆk (1.16)<br />

⎡ ⎤ ⎡<br />

⎤ ⎡ ⎤<br />

u r cos θ s<strong>in</strong> θ 0 u x<br />

⎣ u θ<br />

⎦ = ⎣ −s<strong>in</strong> θ cos θ 0 ⎦ ⎣ u y<br />

⎦<br />

u z 0 0 1 u z<br />

(1.17)<br />

⎡ ⎤ ⎡<br />

⎤ ⎡ ⎤<br />

u x cos θ −s<strong>in</strong> θ 0 u r<br />

⎣ u y<br />

⎦ = ⎣ s<strong>in</strong> θ cos θ 0 ⎦ ⎣ u θ<br />

⎦<br />

u z 0 0 1 u z<br />

(1.18)<br />

Nabla operator<br />

∇=ˆr ∂<br />

∂r + ˆt 1 ∂<br />

r ∂θ + ˆk ∂ (1.19)<br />

∂z<br />

Allow<strong>in</strong>g the symbol ⊗ to stand for the scalar product, the dot product, or the cross product,<br />

and consider<strong>in</strong>g that

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!