31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

132 Integral transform method<br />

C n are the cyl<strong>in</strong>drical Bessel functions of the first k<strong>in</strong>d and order n. Observe that the<br />

differentiation of the Bessel functions is carried out with respect to the product kr, and<br />

not simply r. A brief summary of the fundamental properties of these functions is given<br />

<strong>in</strong> the Appendix.<br />

To the un<strong>in</strong>itiated reader, it may not be at all obvious that the set of <strong>in</strong>tegral transform<br />

equations given above for u and ũ <strong>in</strong>deed constitute a direct and <strong>in</strong>verse Fourier–Bessel<br />

transform pair. The proof of the <strong>in</strong>version is based on the fact that for arbitrary functions<br />

f j (r), the forward transform<br />

⎧ ⎫<br />

⎪⎨ F 1 ⎪⎬<br />

F 2 =<br />

⎪⎩ ⎪ ⎭<br />

F 3<br />

∫ ∞<br />

0<br />

⎧<br />

⎪⎨ J ′ n<br />

n kr J ⎫ ⎧ ⎫<br />

n 0 ⎪⎬ ⎪⎨ f 1 ⎪⎬<br />

n<br />

r<br />

kr<br />

⎪⎩<br />

J n J n ′ 0 f<br />

⎪ ⎭ ⎪ 2 dr (9.36)<br />

⎩ ⎪ ⎭<br />

0 0 J n f 3<br />

can be written <strong>in</strong> the fully diagonal form<br />

⎧<br />

1<br />

⎪⎨ 2 (F ⎫ ⎧<br />

⎫ ⎧<br />

1 + F 2 ) ⎪⎬ ∫ ∞<br />

⎪⎨ J n−1 0 0 ⎪⎬ ⎪⎨<br />

1<br />

1<br />

2<br />

⎪⎩<br />

(F 2 − F 1 ) = r 0 J<br />

⎪ n+1 0<br />

⎭ 0 ⎪⎩<br />

⎪ ⎭ ⎪ ⎩<br />

F 3 0 0 J n<br />

which is a self-reciprocat<strong>in</strong>g Hankel transform, i.e.,<br />

⎧<br />

1<br />

⎪⎨ 2 ( f ⎫ ⎧<br />

⎫ ⎧<br />

1 + f 2 ) ⎪⎬ ∫ ∞<br />

⎪⎨ J n−1 0 0 ⎪⎬ ⎪⎨<br />

1<br />

1<br />

2<br />

⎪⎩<br />

( f 2 − f 1 ) = k 0 J<br />

⎪ n+1 0<br />

⎭ 0 ⎪⎩<br />

⎪ ⎭ ⎪ ⎩<br />

f 3 0 0 J n<br />

2 ( f 1 + f 2 )<br />

1<br />

2 ( f 2 − f 1 )<br />

f 3<br />

⎫<br />

⎪⎬<br />

⎪ ⎭<br />

dr (9.37)<br />

2 (F 1 + F 2 )<br />

1<br />

2 (F 2 − F 1 )<br />

F 3<br />

⎫<br />

⎪⎬<br />

⎪ ⎭<br />

dk (9.38)<br />

Also, the orthogonality of the Fourier series <strong>in</strong> θ must be used to complete the proof of<br />

<strong>in</strong>version. This <strong>in</strong>volves the identity<br />

∫ 2π<br />

0<br />

T n T j dθ = πδ (nj) (1 + δ n0 δ j0 ) = δ (n) j /a n . (9.39)<br />

Transformed wave equation<br />

Apply<strong>in</strong>g a spatial Fourier–Bessel transform to the wave equation, or equivalently, assum<strong>in</strong>g<br />

that u and b are of the form<br />

u(r,θ,z, t) = T n C n f(k, n, z, t), b(r,θ,z, t) = T n C n q(k, n, z, t) (9.40)<br />

<strong>in</strong> which f = [ f 1 f 2 f 3] T , one obta<strong>in</strong>s the three expressions (after lengthy and tedious<br />

algebra, which requires also consideration of the differential equation for the Bessel<br />

functions)<br />

⎧<br />

⎪⎨ −k ( kf 1 − ∂ ∂z f )<br />

3<br />

∇∇·u = T n C n 0<br />

⎪ ⎩ (<br />

−kf1 + ∂ ∂z f 3)<br />

∂<br />

∂z<br />

⎫<br />

⎪⎬<br />

( ∂<br />

2<br />

⎪⎭ , ∇ · ∇u = T nC n<br />

)<br />

∂z f − 2 k2 f<br />

(9.41)<br />

ü = T n C n¨f (9.42)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!