31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

162 Stiffness matrix method for layered media<br />

Therefore, from Table 10.1, we have<br />

{ } {<br />

ũr K<br />

SVP<br />

11<br />

K12<br />

SVP<br />

=<br />

ũ z<br />

(1)<br />

K21 SVP K22<br />

SVP<br />

} −1 {<br />

˜pr<br />

˜p z<br />

}<br />

(1)<br />

{<br />

= 1 s<br />

1<br />

2 (1 − s2 ) ps − 1 2 (1 + } { }<br />

s2 ) 1 1<br />

2kµ ps − 1 2 (1 + s2 ) p 1 2 (1 − s2 ) 2π 0<br />

{<br />

1 s<br />

1<br />

2<br />

=<br />

(1 − }<br />

s2 )<br />

4π kµ ps − 1 2 (1 + (10.80)<br />

s2 )<br />

and<br />

ũ θ(1) = 1<br />

K ˜p SH θ(1)<br />

( )( )<br />

(10.81)<br />

1 1 1<br />

=<br />

=<br />

ks µ 2π 2π ks µ<br />

Observe that, unlike the plane-stra<strong>in</strong> case, the vertical components do not carry an imag<strong>in</strong>ary<br />

factor. F<strong>in</strong>ally, the displacements <strong>in</strong> the spatial doma<strong>in</strong> are<br />

⎧ ⎫ ⎧<br />

⎪⎨<br />

u r ⎪⎬ ∫ ∞<br />

⎪⎨<br />

J ′ 1<br />

1 kr J ⎫ ⎧ ⎫<br />

1 0 ⎪⎬ ⎪⎨ ũ r ⎪⎬<br />

1<br />

u = u θ = T 1<br />

⎪⎩ ⎪<br />

kr<br />

⎭ 0 ⎪⎩<br />

J 1 J<br />

1 ′ 0 ũ<br />

⎪ ⎭ ⎪ θ kdk (10.82)<br />

⎩ ⎪ ⎭<br />

u z 0 0 J 1 ũ z (1)<br />

that is<br />

[<br />

1<br />

u r = (cos θ)<br />

4πµ<br />

∫ ∞<br />

[<br />

1<br />

u θ = (− s<strong>in</strong> θ)<br />

4πµ<br />

[<br />

1<br />

u z = (cos θ)<br />

4πµ<br />

0<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

s 1 2 (1 − s2 )<br />

<br />

s 1 2 (1 − s2 )<br />

<br />

(<br />

J 0 (kr) − J )<br />

1(kr)<br />

dk + 1<br />

kr 2π µ<br />

J 1 (kr)<br />

dk + 1<br />

kr 2π µ<br />

ps − 1 2 (1 + ]<br />

s2 )<br />

J 1 (kr) dk<br />

<br />

∫ ∞<br />

0<br />

1<br />

s<br />

∫ ∞<br />

0<br />

1<br />

s<br />

]<br />

J 1 (kr)<br />

dk<br />

kr<br />

(10.83)<br />

(<br />

J 0 (kr) − J ) ]<br />

1(kr)<br />

dk<br />

kr<br />

(10.84)<br />

(10.85)<br />

which can be evaluated by numerical <strong>in</strong>tegration or, as Chao does, by analytical means.<br />

Example 10.7: Same as Example 10.6, but for a layer over an elastic half-space<br />

The procedure is identical to that <strong>in</strong> Example 10.6. The only difference now is that <strong>in</strong> the<br />

frequency–wavenumber doma<strong>in</strong>, we must first solve the two systems<br />

⎧<br />

⎧ ⎫<br />

ũ r1<br />

1<br />

⎪⎨<br />

⎫⎪ ⎬<br />

ũ z1<br />

= ( K SVP) −1 1<br />

⎪⎨ ⎪⎬ { }<br />

0<br />

ũθ1<br />

and<br />

= ( K SH) { }<br />

−1 1 1<br />

(10.86)<br />

ũ ⎪⎩ r2 ⎪ 2π 0<br />

ũ ⎭ ⎪⎩ ⎪⎭<br />

θ2 2π 0<br />

(1)<br />

ũ z2 0<br />

(1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!