20.03.2020 Aufrufe

stahl + eisen 03/2020 Leseprobe

SCHWERPUNKTE zum Relaunch: Dekarbonisierung * Metallurgie // WEITERE THEMEN: thyssenkrupp - Industrieikone im Umbruch, Zukunft von Stahlwerk Ilva bleibt ungewiss, Sentimentumfrage zu Corona-Virus, China - Zwischen Kohle und Kernkraft, Predictive Maintenance, Gesundheit am Arbeitsplatz

SCHWERPUNKTE zum Relaunch: Dekarbonisierung * Metallurgie // WEITERE THEMEN: thyssenkrupp - Industrieikone im Umbruch, Zukunft von Stahlwerk Ilva bleibt ungewiss, Sentimentumfrage zu Corona-Virus, China - Zwischen Kohle und Kernkraft, Predictive Maintenance, Gesundheit am Arbeitsplatz

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

■Economic return: potential for highly<br />

rfitable reer aluable etal<br />

(Cobalt, Nickel and Lithium)<br />

Social ■ impact: closing the loop with<br />

reuse of battery materials. Image promotion<br />

of the EV industry and brand recognition<br />

through engagement in battery<br />

recycling<br />

Supply ■ chain: without recycling, a shortage<br />

of supply in several key raw materials<br />

could be faced<br />

■Regulatory: market players are assigned<br />

or delegated with the responsibility of EV<br />

battery recycling by government regulations<br />

globally<br />

Sustainable: ■ closed loop economy enabled<br />

by innovative clean technology<br />

There are currently two dominant process<br />

routes for full processing / recycling<br />

of LIBs: hydrometallurgical and pyrometallurgical<br />

processes. The hydrometallurgical<br />

process consumes acidic / basic /<br />

industrial solvents, which are expensive<br />

and require additional processing to treat<br />

the toxic wastewater. It is also limited by<br />

a low reaction speed and a complicated<br />

process route. The pyrometallurgical<br />

process involves melting at high temperatures,<br />

which translates into high energy<br />

consumption (and cost), and high environmental<br />

emissions. The resulting<br />

extracted metal requires subsequent<br />

hydrometallurgical processing to further<br />

separate the products. 4<br />

The major drawbacks of current LIB<br />

recycling technologies can be summarized<br />

as a low product value from partial<br />

processing (physical separation) and a<br />

high operating cost for full processing<br />

(physical + chemical separation), which<br />

requires chemical conversion and metallurgical<br />

separation.<br />

The current high operating cost of<br />

the chemical separation processes naturally<br />

invites interest to develop a process<br />

that can avoid both the high temperature<br />

operations involving melting<br />

of metals or oxides, as well as the operating<br />

expenses associated with usage<br />

of solvent extraction (and to a degree<br />

hydrometallurgical altogether). 5 Given<br />

Total number of EVs in circulation globally<br />

(millions)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2018 <strong>2020</strong> 2025 2<strong>03</strong>0<br />

these unique design requirements, solid<br />

state processes involving conversion of<br />

elements of interest into desired forms<br />

in a solid solid or solid gas reaction regime<br />

become ideal candidates to achieve<br />

the required chemical separation in the<br />

EV LIB recycling exercise.<br />

One of the most notable and well<br />

developed solid state processes used in<br />

modern metallurgical operations is the<br />

production of Direct Reduced Iron (DRI)<br />

for use in steelmaking, which can shed<br />

much light on the design concept of a<br />

solid state process for EV LIB recycling.<br />

What can we learn from the<br />

production of DRI?<br />

DRI is produced from the direct reduction<br />

of iron ore (in the form of lumps,<br />

pellets, or fines into iron a reducing<br />

gas or elemental carbon produced from<br />

natural gas or coal. Many ores are suitable<br />

for direct reduction. Direct reduction<br />

processes can be broadly categorized<br />

into two categories: gas-based and coalbased.<br />

In both cases, the objective of the<br />

process is to remove the oxygen contained<br />

in various forms of ore, converting<br />

it to metallic form in solid state.<br />

The direct reduction process is comparativel<br />

energ efficient as no melting<br />

New EVs manufactured (millions)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2018 <strong>2020</strong> 2025 2<strong>03</strong>0<br />

RoW<br />

China<br />

is involved, with the reduction reactions<br />

taking place below the melting point of<br />

the metal in question (iron, in this case).<br />

Today, direct reduction processes have<br />

een developed to specificall overcome<br />

the difficulties of conventional last<br />

furnaces, the major production route<br />

for primary steel production worldwide.<br />

The initial capital investment and operating<br />

costs of direct reduction plants<br />

are generally lower than integrated steel<br />

plants and are more suitable in locations<br />

where supplies of high-grade coking<br />

coal are limited but steel scrap is<br />

generally available for recycling and<br />

charging at an electric arc furnace. In<br />

gas-based DRI processes, the charge<br />

mix is introduced into a cylindrical<br />

refractory-lined shaft furnace, where it<br />

descends gravit ow and is contacted<br />

upward owing reducing gas<br />

(hydrogen and carbon monoxide),<br />

which reacts with it to reduce the material<br />

prior to producing DRI for discharge.<br />

6<br />

In various forms of coal based DRI<br />

processes, the iron-bearing charge materials<br />

to the DR reactor consist of a<br />

miture of pellets andor lump ore, uxes<br />

such as limestone and/or dolomite<br />

and high volatile coal or lignite. There<br />

Spent LIBs<br />

Recycled<br />

battery metals<br />

~6 wt% Li<br />

~18 wt% Ni<br />

~18 wt% Co<br />

Physical<br />

Separation<br />

Black<br />

Mass<br />

XProEM Process<br />

~99,5 wt% Li<br />

~99,9 wt% Ni<br />

~99,9 wt% Co<br />

<strong>stahl</strong>und<strong>eisen</strong>.de März <strong>2020</strong> 49

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!