14.06.2013 Views

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Interconversion between a supramolecular polymer and a <strong>di</strong>screte<br />

octameric species from a guanosine derivatives at surfaces<br />

Omar Pandoli a , Stefano Masiero a , Silvia Pieraccini a , Paolo Samorì b and Gian Piero Spada a<br />

a<br />

Dipartimento <strong>di</strong> Chimica Organica “A. Mangini”, Alma Mater <strong>Stu<strong>di</strong></strong>orum <strong>Università</strong> <strong>di</strong> Bologna,<br />

Via San Giacomo 11, 40126 Bologna, Italy<br />

b<br />

ISIS-ULP, 8 allèe Gaspard Monge, 67000 Strasbourg, France & ISOF-CNR, via Gobetti 101,<br />

40129 Bologna, Italy<br />

Lipophilic guanosines are unique buil<strong>di</strong>ng blocks which are capable of self-assembling into<br />

<strong>di</strong>fferent structures depen<strong>di</strong>ng on the experimental con<strong>di</strong>tions 1 . In the presence of certain<br />

cations, they can form G-quartet-based octamers or columnar aggregates depen<strong>di</strong>ng on the<br />

concentration of the cation and nucleobase. We have recently proven that it is possible to<br />

externally trigger in solution a tuneable interconversion between two highly ordered guanine<br />

based supramolecular motifs, i.e. G-ribbons into G-quartet columns 2 (Figure1). With the final<br />

goal of obtaining a prototype of a molecular device, we are investigating the transfer of this<br />

“switch” from solution to a surface.<br />

In this communication we describe the self-assembly of 1 onto the HOPG surface either as neat<br />

compound or in the presence of metal cations. The obtained sub-molecularly resolved STM<br />

results were corroborated by molecular modelling.<br />

1<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H H<br />

N N<br />

N<br />

N H N<br />

N<br />

HN<br />

N<br />

N<br />

N<br />

N<br />

N H H<br />

O H<br />

O<br />

N<br />

N<br />

N H<br />

H N<br />

O<br />

N<br />

HO<br />

H<br />

NH<br />

N H<br />

N<br />

N<br />

H<br />

H<br />

O N<br />

O<br />

N H<br />

H N<br />

N<br />

O N<br />

H OH<br />

H<br />

NN<br />

N<br />

N<br />

N<br />

N<br />

HN<br />

N H<br />

N<br />

N<br />

N<br />

N<br />

H H<br />

N<br />

H H<br />

N N<br />

N<br />

N H N<br />

N<br />

HN<br />

N<br />

N<br />

N<br />

N<br />

N H H<br />

O H<br />

O<br />

N<br />

N<br />

N H<br />

H N<br />

O<br />

N<br />

HO<br />

H<br />

NH<br />

N H<br />

N<br />

N<br />

H<br />

H<br />

O N<br />

O<br />

N H<br />

H N<br />

N<br />

O N<br />

H OH<br />

H<br />

NN<br />

N<br />

N<br />

N<br />

N<br />

HN<br />

N H<br />

N<br />

N<br />

N<br />

N<br />

H H<br />

N<br />

H H<br />

N N<br />

N<br />

N H N<br />

N<br />

HN<br />

N<br />

N<br />

N<br />

N<br />

N H H<br />

O H<br />

O<br />

N<br />

N<br />

N H<br />

H N<br />

O<br />

N<br />

HO<br />

H<br />

NH<br />

N H<br />

N<br />

N<br />

H<br />

H<br />

O N<br />

O<br />

N H<br />

H N<br />

N<br />

O N<br />

H OH<br />

H<br />

NN<br />

N<br />

N<br />

N<br />

N<br />

HN<br />

N H<br />

N<br />

N<br />

N<br />

N<br />

H H<br />

N<br />

H H<br />

N N<br />

N<br />

N H N<br />

N<br />

HN<br />

N<br />

N<br />

N<br />

N<br />

N H H<br />

O H<br />

O<br />

N<br />

N H<br />

H N<br />

O<br />

N<br />

HO<br />

H<br />

H<br />

N HN<br />

H<br />

H<br />

O N<br />

O<br />

N H<br />

H N<br />

O N<br />

H OH<br />

H<br />

NN<br />

N<br />

N<br />

N<br />

N<br />

HN<br />

N H<br />

N<br />

N<br />

N<br />

N<br />

H H<br />

Figure 1<br />

NN<br />

NN<br />

NN<br />

NN<br />

NN NN NN<br />

NN<br />

HH<br />

HH<br />

N O<br />

H<br />

N O<br />

N H N O<br />

H<br />

N O<br />

N H N O<br />

H<br />

N O<br />

N H N O<br />

H<br />

N O<br />

N H<br />

N H<br />

N H<br />

N H<br />

N H<br />

N H<br />

N H<br />

N H<br />

N H<br />

NN<br />

NN<br />

HH<br />

HH<br />

N<br />

H N<br />

N H N<br />

H<br />

N H N<br />

H N<br />

N H N<br />

H<br />

H<br />

OO<br />

N N<br />

H N<br />

N H N<br />

H<br />

N H N<br />

H N<br />

N H N<br />

H<br />

H<br />

OO<br />

N<br />

OO<br />

OO<br />

NN<br />

NN<br />

HH<br />

HH<br />

HH<br />

HH<br />

NN<br />

NN<br />

NN<br />

NN<br />

NN<br />

NN<br />

NN<br />

NN<br />

PSB 31<br />

[1] a) G.P. Spada, G. Gottarelli, Chem. Rec 2004, 4, 39-49; b) G.P. Spada, J.T. Davis, Chem.<br />

Soc. Rev. <strong>2007</strong>, 36, 296-313<br />

[2] S.Pieraccini, S. Masiero, O. Pandoli, P. Samorì, and G.P. Spada, Organic Letters 2006, 8,<br />

3125-8<br />

Spectroscopic study of of lasalocid ester with 2-thio-1-ethanol and its<br />

complexes with monowalent cations<br />

Radosaw Pankiewicz, Grzegorz Schroeder, Bogumi Brzezinski<br />

Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, PL-60780 Pozna, Poland<br />

e-mail: radek@px.pl<br />

HO<br />

O<br />

SH<br />

O<br />

OH<br />

Lasalocid ester with 2-thio-1-ethanol<br />

Ionophorous antibiotics are a group of bioactive molecules able to transport monovalent and<br />

bivalentmetal cations across natural and artificial lipid membranes. A polyether antibiotic –<br />

Lasalocid belongs to this class of compounds. Lasalocid (isolated from Streptomyces<br />

lasaliensis) is a good anticocci<strong>di</strong>al agent for cattle, sheep and chicken. In the cell membrane<br />

lasalocid exchanges metal ions against H + , lea<strong>di</strong>ng to changes in the pH values and to an<br />

increase in osmotic pressure inside the cell, which finally leads to the cell death. A new ester of<br />

lasalocid with 2-thio-1-ethanol has been synthesised and its complexation of monovalent<br />

cations has been stu<strong>di</strong>ed by ESI mass spectrometry as well as the 1 H, 13 C NMR and FT-IR<br />

spectroscopic methods. The ESI-MS spectra show that ester forms stable 1:1 complexes with<br />

Li + , Na + , K + , Rb + and Cs + cations. With his lasalocid derivative self-assembled monolayers on<br />

silver and gold have been obtained. Densely packed monolayers have remained stable and<br />

have not desorbed from the Ag or Au electrode on the potential cycling. The structure of<br />

ionophores and their complexes with monovalent cations were calculated and visualized by the<br />

AM1d and PM5 semi-empirical methods. Mo<strong>di</strong>fication of the monolayers by strong complexation<br />

agents, like ionophores, allows their application in many areas: in electrodes, bio-sensors or<br />

affinity chromatography.<br />

[1] H. Tsukube, Cation – Bin<strong>di</strong>ng by macrocycles; Marcel–Dekker: New York, 1990, 497<br />

[2] R. Pankiewicz, G. Schroeder, B. Brzezinski, J. Mol. Struct., 2005, 733 217.<br />

[3] B. ska, G. Schroeder, T. uczak, P. Przybylski, R. Pankiewicz, M. Betowska-<br />

Brzezinska, B. Brzezinski, Thin Solid Films, 2006, 515, 152<br />

[4] R. Pankiewicz, G. Schroeder, B. Brzezinski, unpublished results<br />

O<br />

O<br />

O<br />

OH<br />

PSB 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!