14.06.2013 Views

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Supramolecular control of a metal center embedded in a biomimetic<br />

hydrophobic cavity: the Funnel Complexes.<br />

Olivia Reinaud<br />

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601,<br />

Université René Descartes, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France<br />

E-mail: Olivia.Reinaud@univ-paris5.fr<br />

Modeling the active site of an enzyme is an important tool for a better understan<strong>di</strong>ng of its<br />

catalytic cycle. Classically however, biomimetic inorganic chemistry is mainly focused on<br />

reproducing the first coor<strong>di</strong>nation sphere of the metal ion and little information is available<br />

concerning the influence, or even the control, that the microenvironment provided by a protein<br />

can have on the reactivity of the metal.<br />

The aim of our work is to design supramolecular systems that will mimic both the coor<strong>di</strong>nation<br />

core and the hydrophobic pocket of a metallo-enzyme active site. Our strategy is to synthesize<br />

calix[6]arene-based ligands that allow the control of the coor<strong>di</strong>nation sphere of the metal ion<br />

together with the approach and the bin<strong>di</strong>ng of an external molecule.<br />

Three generations have been yet developed: the first 1 offers three nitrogenous arms, the<br />

second 2 has a fourth hemi-labile bin<strong>di</strong>ng site X, the third 3 presents a capped calixarene<br />

exemplified by the calix-tren ligand that allows a better control of the geometry of the<br />

supramolecular e<strong>di</strong>fices. Characterization and comparative behavior of the correspon<strong>di</strong>ng zinc<br />

and copper complexes will be presented.<br />

His His His<br />

M<br />

L<br />

S<br />

N<br />

N<br />

M<br />

L<br />

N<br />

n+<br />

X n+<br />

N N<br />

N M<br />

L<br />

I II III<br />

Enzyme active site Calix-models<br />

X n+<br />

N<br />

N M<br />

N<br />

[1]. S. Blanchard, L. Le Clainche, M.-N. Rager, B. Chansou, J. P. Tuchagues, A. Duprat, Y. Le Mest, O.<br />

Reinaud, Angew. Chem., Int. Ed., 1998, 37, 2732; O. Sénèque, M.-N. Rager, M. Giorgi, O. Reinaud, J.<br />

Am. Chem. Soc., 2000, 122, 6183; O. Sénèque, M. Giorgi, O. Reinaud Supramol. Chem. 2003, 15, 573;<br />

U. Darbost, O. Sénèque, Y. Li, G. Bertho, J. Marrot, M.-N. Rager, O. Reinaud, Ivan Jabin, Chem. Eur. J.<br />

<strong>2007</strong>, 13, 2078. D. Coquière, J. Marrot and O. Reinaud, Chem. Commun. 2006, 3924.<br />

[2]. O. Sénèque, M. Campion, B. Douziech, M. Giorgi, Y. Le Mest, O. Reinaud, Dalton Trans. 2003,<br />

4216; O. Sénèque, M.-N. Rager, M. Giorgi, T. Prangé, A. Tomas, O. Reinaud. J. Am. Chem. Soc. 2005,<br />

127, 14833.<br />

[3]. U. Darbost, M.-N. Rager, S. Petit, I. Jabin, O. Reinaud, J. Am. Chem. Soc. 2005, 127, 8517; G.<br />

Izzet, B. Douziech, T. Prangé, A. Tomas, I. Jabin, Y. Le Mest, O. Reinaud, Proc. Natl. Acad. Sci. USA,<br />

2005, 102, 6831; X. Zeng, D. Coquière, A. Alenda, E. Garrier, T. Prangé, Y. Li, O. Reinaud, I. Jabin,<br />

Chem. Eur. J. 2006, 12, 6393. G. Izzet, X. Zeng, H. Akdas, J. Marrot and O. Reinaud, Chem Commun.<br />

<strong>2007</strong>, 810. G. Izzet, X. Zeng, D. Over, B. Douziech, J. Zeitouny, M. Giorgi, I. Jabin, Y. Le Mest, O.<br />

Reinaud, Inorg. Chem. <strong>2007</strong>, 46, 375. G. Izzet, M.-N. Rager, O. Reinaud, Dalton Trans. <strong>2007</strong>, 771.<br />

L<br />

IL 11<br />

Why are Certain Cyclopeptides so Efficient Anion Hosts?<br />

Stefan Kubik<br />

Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern,<br />

Erwin-Schrö<strong>di</strong>nger-Strasse, D-67663 Kaiserslautern, Germany<br />

We recently demonstrated that cyclic hexapeptide 1 containing L-proline and 6-aminopicolinic<br />

acid subunits strongly binds to sulfate or halides even in competitive protic solvents such as<br />

80% water/methanol.[1] The main reason for this, for a neutral host, unusual property turned out<br />

to be the sandwich-type structure of the complexes formed in which the anion is included into a<br />

cavity between two inter<strong>di</strong>gitating cyclopeptide moieties.<br />

O<br />

HN<br />

N<br />

N<br />

O<br />

O<br />

N<br />

N<br />

NH<br />

NH<br />

O<br />

O<br />

N<br />

N<br />

O<br />

O<br />

N<br />

O<br />

N<br />

HN<br />

HN<br />

O<br />

N<br />

N<br />

O<br />

N<br />

O<br />

N<br />

O<br />

NH<br />

H<br />

N<br />

X<br />

O O<br />

1 2<br />

H<br />

N<br />

O<br />

HN<br />

N<br />

N<br />

O<br />

O<br />

N<br />

N<br />

NH<br />

NH<br />

O<br />

O<br />

N<br />

IL 12<br />

The 2:1 anion complexes of 1 were subsequently converted into 1:1 complexes by covalently<br />

linking two cyclopeptide rings together. Biscyclopeptides of the general structure 2 have thus<br />

been obtained that are highly efficient neutral hosts for inorganic anions in aqueous me<strong>di</strong>a.[2]<br />

Anion affinity as well as selectivity of these biscyclopeptides depend on the structure of the<br />

linker X which was optimized using molecular modeling in collaboration with Benjamin P. Hay<br />

(Pacific Northwest National Laboratory, Richland, USA) and dynamic combinatorial chemistry in<br />

collaboration with Sijbren Otto (University of Cambridge, UK).[3]<br />

Although the anion affinity of such biscyclopeptides is partly a result of the almost perfect<br />

preorganisation of the two cyclopeptide rings for anion bin<strong>di</strong>ng as well as the fact that the anion<br />

is shielded in the complex from the surroun<strong>di</strong>ng solvent molecules, it seemed unlikely that<br />

stability constants of the sulfate complexes of some of these biscyclopeptide of 10 6 - 10 7 M -1 in<br />

33% water/acetonitrile or 50% water/methanol can be rationalized on the basis of these effects<br />

alone. Indeed, a detailed structural analysis of the biscyclopeptide/anion complexes as well as<br />

of the solvent dependence of complex stability revealed that intra-receptor interactions between<br />

biscyclopeptide regions that are not <strong>di</strong>rectly involved in anion bin<strong>di</strong>ng is an important factor<br />

contributing to complex stability.[4] Engineering such intra-receptor interactions into synthetic<br />

hosts therefore seems to be an attractive and powerful strategy to boost host-guest affinities.<br />

[1] S. Kubik, R. Goddard, R. Kirchner, D. Nolting and J. Seidel, Angew. Chem. Int. Ed. 2001, 40,<br />

2648-2651.<br />

[2] S. Kubik, R. Kirchner, D. Nolting and J. Seidel, J. Am. Chem. Soc. 2002, 124, 12752-12760.<br />

[3] S. Otto and S. Kubik, J. Am. Chem. Soc. 2003, 125, 7804-7805.<br />

[4] Z. Rodriguez-Docampo, S. I. Pascu, S. Kubik and S. Otto, J. Am. Chem. Soc. 2006, 128,<br />

11206-11210.<br />

N<br />

O

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!