14.06.2013 Views

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PL 7<br />

Calixarenes in Action: From Anion Recognition to DNA Condensation and<br />

RNA Cleavage<br />

Rocco Ungaro<br />

Dipartimento <strong>di</strong> Chimica Organica e Industriale, <strong>Università</strong> <strong>degli</strong> <strong>Stu<strong>di</strong></strong> <strong>di</strong> Parma and INSTM,<br />

Sezione <strong>di</strong> Parma, Viale G.P. Usberti 17/A, I-43100-Parma (Italy)<br />

Anion Recognition is an important topic in Supramolecular Chemistry and has been tackled<br />

using various strategies depen<strong>di</strong>ng on the particular application which one aims to. For many<br />

years we have been particularly interested in the synthesis of selective receptors for carboxylate<br />

anions, which are substrates of biological interest, using calixarenes as scaffolds and hydrogen<br />

bon<strong>di</strong>ng as the main supramolecular interaction. [1]<br />

More recently, we have adorned the upper rim of calix[n]arenes, having <strong>di</strong>fferent sizes and<br />

Figure<br />

Cl Cl<br />

Cl<br />

+<br />

H2N H N<br />

+<br />

+<br />

2 NH2 H N<br />

Cl<br />

2 NH<br />

+<br />

2<br />

NH<br />

HN<br />

NH2 HN<br />

H N<br />

HN<br />

2<br />

NH2 O O O O<br />

R<br />

R R R<br />

R = C 3 H 7 : 4G4Pr-cone<br />

R = C 6 H 13 : 4G4Hex-cone<br />

R = C 8 H 17 : 4G4Oct-cone<br />

Cl<br />

H2N +<br />

H<br />

N<br />

NH 2<br />

+ NH2 Cl<br />

H N NH<br />

2<br />

OMe MeO<br />

OMe<br />

HN<br />

Cl<br />

+ NH2 shapes, with guani<strong>di</strong>nium groups and used the resulting water soluble multivalent ligands<br />

(Figure) in DNA bin<strong>di</strong>ng and cell transfection. By Atomic Force Microscopy (AFM) it has been<br />

possible to correlate the topology of the ligands with their DNA condensation and transfection<br />

ability. [2]<br />

In collaboration with Mandolini’s and Reinhoudt’s groups we have synthesized a series of<br />

calix[4]arenes bearing at the upper rim a variable number of metal ion chelating units such as<br />

aza macrocycles ([12]aneN3) or 2,6-bis[(<strong>di</strong>methylamino)methyl]pyri<strong>di</strong>ne (DMAP). The Zn(II) or<br />

Cu(II) complexes of these multivalent ligands are able to catalyze the methanolysis of aryl<br />

esters and the cleavage of phospho<strong>di</strong>ester bonds in oligoribonucleotides, showing substrate<br />

selectivity and cooperativity between the metal centers. [3]<br />

An overview of the most recent results obtained using anion receptors, multivalent ligands, and<br />

supramolecular catalysts based on calixarenes will be given in the lecture.<br />

[1] A. Casnati, F. Sansone, R. Ungaro, Acc. Chem. Res. 2003, 36, 246-254. A.V.<br />

Yakovenko,.I. Boyko, V. Kalchenko, L. Bal<strong>di</strong>ni, A. Casnati, F. Sansone, R. Ungaro, J. Org.<br />

Chem. <strong>2007</strong>, 72(9), 3223-3231.<br />

[2] F. Sansone, M. Du<strong>di</strong>, G. Donofrio, C. Rivetti, L. Bal<strong>di</strong>ni, A. Casnati, S. Cellai, R.Ungaro, J.<br />

Am. Chem. Soc. 2006, 128, 14528 – 14536. L. Bal<strong>di</strong>ni, A. Casnati, F. Sansone, R. Ungaro,<br />

Chem. Soc. Rev. <strong>2007</strong>, 34, 254-266.<br />

[3] R. Cacciapaglia, A. Casnati, L. Mandolini, D.N. Reinhoudt, R. Salvio, A. Sartori, R. Ungaro,<br />

J. Am. Chem. Soc. 2006, 128, 12322-12330 and references therein.<br />

OMe<br />

NH 2<br />

N<br />

H 2<br />

n-3<br />

N<br />

H<br />

n = 4: 4G4Me-mobile<br />

n = 6: 6G6Me-mobile<br />

n = 8: 8G8Me-mobile<br />

Cl<br />

+<br />

NH2 +<br />

+<br />

Cl<br />

H<br />

Cl<br />

2N NH2 N<br />

H 2<br />

NH<br />

O<br />

O O<br />

HN<br />

O<br />

NH 2<br />

NH<br />

HN<br />

Cl<br />

H2N +<br />

NH2 H2N 4G4Pr-alt<br />

Cl<br />

NH2 +<br />

PL 8<br />

From Supramolecular Chemistry to Constitutional Dynamic Chemistry<br />

Jean-Marie Lehn<br />

ISIS, Université Louis Pasteur, Strasbourg and Collège de France, Paris<br />

Supramolecular chemistry is actively exploring the design of systems undergoing selforganization,<br />

i.e. systems capable of spontaneously generating well-defined functional<br />

supramolecular architectures by self-assembly from their components, on the basis of the<br />

molecular information stored in the covalent framework of the components and read out at the<br />

supramolecular level through specific interactional algorithms, thus behaving as programmed<br />

chemical systems.<br />

The implementation of such molecular information-controlled self-organizing processes for<br />

the generation of functional nanostructures provides a powerful approach to nanoscience and<br />

nanotechnology .<br />

Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the<br />

interactions connecting the molecular components of a supramolecular entity and the resulting<br />

ability of supramolecular species to exchange their constituents. The same holds for molecular<br />

chemistry when the molecular entity contains covalent bonds that may form and break<br />

reversibility, so as to allow a continuous change in constitution by reorganization and exchange<br />

of buil<strong>di</strong>ng blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the<br />

molecular and supramolecular levels.<br />

CDC introduces a para<strong>di</strong>gm shift with respect to constitutionally static chemistry. The latter<br />

relies on design for the generation of a target entity, while CDC takes advantage of dynamic<br />

<strong>di</strong>versity to allow variation and selection. The implementation of selection in chemistry<br />

introduces a fundamental change in outlook. Thus, self-organization by design strives to<br />

achieve full control over the output molecular or supramolecular entity by explicit programming,<br />

whereas self-organization with selection operates on dynamic constitutional <strong>di</strong>versity in<br />

response to either internal or external factors to achieve adaptation.<br />

Applications of this approach in biological systems as well as in materials science will be<br />

described.<br />

The merging of the features: - information and programmability, - dynamics and reversibility,<br />

-constitution and structural <strong>di</strong>versity, points towards the emergence of adaptive chemistry.<br />

Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspectives, VCH Weinheim, 1995.<br />

Lehn, J.-M., Dynamic combinatorial chemistry and virtual combinatorial libraries, Chem. Eur.<br />

J., 1999, 5, 2455.<br />

Lehn, J.-M., Programmed chemical systems : Multiple subprograms and multiple<br />

processing/expression of molecular information, Chem. Eur. J., 2000, 6, 2097.<br />

Lehn, J.-M., Toward complex matter: Supramolecular chemistry and self-organization, Proc.<br />

Natl. Acad. Sci. USA, 2002, 99, 4763.<br />

Lehn, J.-M., Toward self-organization and complex matter, Science, 2002, 295, 2400.<br />

Lehn, J.-M., Dynamers : Dynamic molecular and supramolecular polymers,<br />

Prog. Polym. Sci., 2005, 30, 814.<br />

Lehn, J.-M., From supramolecular chemistry towards constitutional dynamic chemistry and<br />

adaptive chemistry, Chem. Soc. Rev., <strong>2007</strong>, 36, 151.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!