14.06.2013 Views

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

ISMSC 2007 - Università degli Studi di Pavia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sensing with cavitands: Moving from selectivity to specificity<br />

Paolo Betti a , Gionata Battistini b , Luca Pro<strong>di</strong> b , Enrico Dalcanale a<br />

a Dipartimento <strong>di</strong> Chimica Organica ed Industriale, <strong>Università</strong> <strong>di</strong> Parma, viale G.P. Usberti 17/a,<br />

43100 Parma, Italy<br />

b Dipartimento <strong>di</strong> Chimica “G. Ciamician”, via F. Selmi n.2, 40126 Bologna, Italy<br />

Quartz-Crystal-Microbalance mass transducers (QCM) are by far the easiest platforms to<br />

translate the chemical recognition proprieties of a receptor in a treatable signal. We have<br />

already designed and tested QCM supramolecular sensors using phosphonate cavitands as<br />

coated molecular receptors. These cavitands present a phosphonate bridging group as<br />

hydrogen bond acceptor having the P=O group oriented alternatively inward (POin) or outward<br />

(POout) with respect to a preorganised cavity, capable of CH-π interactions.[1] The simultaneous<br />

presence of the two interactions which is possible only for the POin isomer, provides an<br />

exceptional rise in selectivity toward short chain alcohols.[2] However, upon increasing the<br />

chain length of the alcohol, the purely <strong>di</strong>spersive unspecific interactions become dominant with<br />

respect to the specific ones, jeopar<strong>di</strong>zing the selectivity of the sensors.<br />

To overcome this problem and reach the desired specificity we have designed and tested a new<br />

class of phosphonate cavitands incorporating a suitable transduction group (a chromophore),<br />

which can be activated exclusively by the molecular recognition event.<br />

More specifically, by coupling the H-bond acceptor to the chromophore it has been possible to<br />

change the emission spectra of the chromophore upon analyte complexation. This behavior has<br />

been observed both in solution and in a coated solid film.<br />

O<br />

O<br />

O<br />

R<br />

R<br />

O<br />

NH<br />

R<br />

O<br />

P<br />

O<br />

R<br />

O<br />

O<br />

O<br />

Analytes<br />

Emission Spectra<br />

[1] R. Pinalli, M. Suman, E. Dalcanale, Eur. J. Org. Chem., 2004, 451 – 462<br />

[2] L. Piron<strong>di</strong>ni, E. Dalcanale, Chem. Soc. Rev., <strong>2007</strong>, 35, in press<br />

PSA 17<br />

The Construction of Coor<strong>di</strong>nation Networks Incorporating {M(tpy)2} n+ PSA 18<br />

(tpy =<br />

2,2:6,2-terpyri<strong>di</strong>ne) Groups<br />

Jonathon E. Beves, a Edwin C. Constable, a Catherine E. Housecroft, a Cameron J. Kepert b ,<br />

Markus Neuburger, a David J. Price b and Silvia Schaffner a<br />

a Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056, Basel, Switzerland<br />

b School of Chemistry, University of Sydney, NSW 2006, Australia<br />

Iron(II) and ruthenium(II) complexes of 2,2’:6’,2’’-terpyri<strong>di</strong>ne are the focus of extensive interest<br />

in supramolecular chemistry [1]. The inclusion of these groups into extended structures offers<br />

the opportunity to build electrochemical or photophysical properties into addressable molecular<br />

frameworks.<br />

~7 Å<br />

N<br />

N<br />

~18 Å<br />

N<br />

N<br />

N<br />

Ru<br />

N<br />

N N<br />

N<br />

1 2<br />

N<br />

2+<br />

~22 Å<br />

N<br />

N<br />

NH<br />

N<br />

N N<br />

Ru<br />

N N<br />

We are developing [2] coor<strong>di</strong>nation polymers containing {M(tpy)2} units. A key buil<strong>di</strong>ng block is<br />

the ligand 4’-(4-pyridyl)-2,2’:6’,2”-terpyri<strong>di</strong>ne, which acts as a terdentate ligand with a pendant 4pyridyl<br />

ring. In these structures the {M(tpy)2} moieties act as ‘expanded 4,4'-bipyri<strong>di</strong>nes’ in which<br />

the two 4-pyridyl metal-bin<strong>di</strong>ng domains are separated by metal-containing {M(tpy)2} scaffolds.<br />

Figure 1 ([Ru(tpypy)2]-Ag-)n coor<strong>di</strong>nation polymer<br />

[1] E. C. Constable, Chem. Soc. Rev., <strong>2007</strong>, 36, 246.<br />

[2] J. E. Beves, E. C. Constable, C. E. Housecroft, C. J. Kepert, D. J. Price, CrystEngComm,<br />

<strong>2007</strong>, in press.<br />

N<br />

HN N<br />

3<br />

N<br />

2+

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!