06.08.2013 Views

Abstract

Abstract

Abstract

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 4. THEORY 80<br />

Combining Equation 1.16 for U(x) and Equation 1.9 for T (x, z), we get that the<br />

explicit dependence of T (x, k − k ′ )onu is given by<br />

T (x, k − k ′ )= q2<br />

Lc<br />

2<br />

2πɛ 0<br />

L Kmax<br />

0<br />

[J(x − y, z) − J(x + y, z)] sin(2y(k − k<br />

−Kmax<br />

′ ))u(z,k ′′ )dk ′′ dzdy<br />

Lc L 2<br />

+ q2<br />

ɛ<br />

0<br />

+<br />

0<br />

Lc<br />

2<br />

0<br />

[J(x + y, z) − J(x − y, z)] sin(2y(k − k ′ ))Nd(z)dzdy<br />

dy sin(2y(k − k ′ <br />

)) ∆c(x + y) − ∆c(x − y) − 2Vy<br />

<br />

.<br />

L<br />

We note that T (x, k − k ′ ) is a continuous function. To get an upper bound on<br />

||T ||∞, we will look at each term of T (x, k − k ′ ) individually. Define T1(x, k − k ′ )as<br />

T1(x, k−k ′ )= q2<br />

Lc<br />

2<br />

2πɛ 0<br />

So,<br />

<br />

<br />

|T1(x, k − k)| = q2<br />

2πɛ<br />

≤ q2<br />

2πɛ<br />

L Kmax<br />

Lc<br />

2<br />

0<br />

Lc<br />

2<br />

0<br />

0<br />

≤ q2<br />

2πɛ<br />

−Kmax<br />

[J(x−y, z)−J(x+y, z)] sin(2y(k−k ′ ))u(z,k ′′ )dk ′′ dzdy.<br />

L Kmax<br />

0 −Kmax [J(x − y, z) − J(x + y, z)] sin(2y(k − k′ ))u(z,k ′′ )dk ′′ dzdy<br />

L Kmax<br />

0 −Kmax |[J(x − y, z) − J(x + y, z)] sin(2y(k − k′ ))u(z,k ′′ )|dk ′′ dzdy<br />

Lc<br />

2<br />

0<br />

≤ q2<br />

2πɛ<br />

Lc<br />

2<br />

0<br />

L Kmax<br />

0 −Kmax 2||J||∞|u(z,k ′′ )|dk ′′ dzdy<br />

L Kmax<br />

0 −Kmax 4||J||2∞dk ′′ dz<br />

1<br />

2 L<br />

0<br />

= q2Lc 4πɛ 2J∞<br />

√<br />

2KmaxLu2.<br />

Kmax<br />

−Kmax u2 (z,k ′′ )dk ′′ 1<br />

2<br />

dz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!