15.08.2013 Views

Thermal properties in mesoscopics: physics and ... - ResearchGate

Thermal properties in mesoscopics: physics and ... - ResearchGate

Thermal properties in mesoscopics: physics and ... - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

E F<br />

eV<br />

(a)<br />

e<br />

E<br />

Δ<br />

Δ<br />

N I S<br />

E F<br />

forbidden<br />

levels<br />

Q&<br />

A A(nW/μm2<br />

)<br />

(b)<br />

20<br />

15<br />

10<br />

5<br />

0.15<br />

0.2<br />

k BT/Δ (0) = 0.3<br />

0<br />

0 3 6 9<br />

T (10-2 )<br />

FIG. 4 (Color <strong>in</strong> onl<strong>in</strong>e edition) (a) Sketch of the energy b<strong>and</strong><br />

diagram of a voltage biased NIS junction. Upon bias<strong>in</strong>g the<br />

structure, the most energetic electrons (e) can most easily<br />

tunnel <strong>in</strong>to the superconductor. As a result the electron gas<br />

<strong>in</strong> the N electrode is cooled. (b) Maximum cool<strong>in</strong>g power<br />

surface density ˙ QA vs <strong>in</strong>terface transmissivity T at different<br />

temperatures calculated for a NS contact.<br />

can hence be typically ignored. Therefore, the Peltier refrigerators<br />

discussed <strong>in</strong> Subs. V.B rely on materials with<br />

a low EF .<br />

2. Superconduct<strong>in</strong>g tunnel structures<br />

Consider a NIS tunnel structure, coupl<strong>in</strong>g a large superconduct<strong>in</strong>g<br />

reservoir with temperature Te,S to a large<br />

normal-metal reservoir with temperature Te,N via a tunnel<br />

junction with resistance RT . Let us then assume<br />

a voltage V applied over the system. In this case, the<br />

heat current (cool<strong>in</strong>g power) from the normal metal is<br />

given by Eq. (30) with NL(E) = 1, NR(E) = NS(E),<br />

fL(E) ≡ feq(E − eV, Te,N ) <strong>and</strong> fR(E) ≡ feq(E, Te,S).<br />

For small pair break<strong>in</strong>g <strong>in</strong>side the superconductor, i.e.,<br />

Γ ≪ ∆, ˙ QNIS is positive for eV < ∆, i.e., it cools<br />

the normal metal. It is straightforward to show that<br />

˙QNIS(V ) = ˙ QNIS(−V ). This is <strong>in</strong> contrast with Peltier<br />

cool<strong>in</strong>g, where the sign of the current determ<strong>in</strong>es the direction<br />

of the heat current. For eV > ∆, the current<br />

through the junction <strong>in</strong>creases strongly, result<strong>in</strong>g <strong>in</strong> Joule<br />

heat<strong>in</strong>g <strong>and</strong> mak<strong>in</strong>g ˙ QNIS negative. The cool<strong>in</strong>g power is<br />

maximal near eV ≈ ∆.<br />

In order to underst<strong>and</strong> the basic mechanism for cool<strong>in</strong>g<br />

<strong>in</strong> such systems, let us consider the simplified energy<br />

b<strong>and</strong> diagram of a NIS tunnel junction biased at voltage<br />

V , as depicted <strong>in</strong> Fig. 4(a). The physical mechanism<br />

underly<strong>in</strong>g quasiparticle cool<strong>in</strong>g is rather simple: ow<strong>in</strong>g<br />

to the presence of the superconductor, <strong>in</strong> the tunnel<strong>in</strong>g<br />

process quasiparticles with energy E < ∆ cannot tunnel<br />

<strong>in</strong>side the forbidden energy gap, but the more energetic<br />

electrons (with E > ∆) are removed from the N electrode.<br />

As a consequence of this ”selective” tunnel<strong>in</strong>g of<br />

hot particles, the electron distribution function <strong>in</strong> the N<br />

region becomes sharper: the NIS junction thus behaves<br />

as an electron cooler.<br />

The role of barrier transmissivity <strong>in</strong> govern<strong>in</strong>g heat<br />

flux across the NIS structure was analyzed by Bardas<br />

hQ /(2 ∆ )<br />

2<br />

.<br />

(a)<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

- 0.02<br />

- 0.04<br />

- 0.06<br />

- 0.08<br />

- 0.1<br />

0 0.5 1 1.5<br />

eV/∆<br />

(b)<br />

2.5<br />

hI /(2e ∆ )<br />

2<br />

1.5<br />

1<br />

0.5<br />

11<br />

0<br />

0 0.5<br />

eV/∆<br />

1 1.5<br />

FIG. 5 (Color <strong>in</strong> onl<strong>in</strong>e edition): (a) NS po<strong>in</strong>t contact heat<br />

current from the N side as a function of voltage for different<br />

transparencies T (from top to bottom, tunnel<strong>in</strong>g limit T → 0,<br />

T = 0.005, T = 0.01, T = 0.05, T = 0.5 <strong>and</strong> T = 1) at<br />

kBT = 0.3∆. For T 0.05, the heat current is positive, correspond<strong>in</strong>g<br />

to cool<strong>in</strong>g. (b) NS po<strong>in</strong>t contact current-voltage<br />

characteristics for the same values of T <strong>and</strong> T as <strong>in</strong> (a) (now<br />

T <strong>in</strong>creases from bottom to top). The first four curves lie essentially<br />

on top of each other. The correspond<strong>in</strong>g NIN curves<br />

are shown with the dashed l<strong>in</strong>es.<br />

<strong>and</strong> Aver<strong>in</strong> (1995). They po<strong>in</strong>ted out the <strong>in</strong>terplay between<br />

s<strong>in</strong>gle-particle tunnel<strong>in</strong>g <strong>and</strong> Andreev reflection<br />

(Andreev, 1964a) on the heat current. In the follow<strong>in</strong>g it<br />

is useful to summarize their ma<strong>in</strong> results.<br />

The cool<strong>in</strong>g regime requires a tunnel contact. The effect<br />

of transmissivity is illustrated <strong>in</strong> Fig. 4(b), which<br />

shows the maximum of the heat current density (i.e., the<br />

specific cool<strong>in</strong>g power) ˙ QA versus <strong>in</strong>terface transmissivity<br />

T at different temperatures. This can be calculated<br />

for a generic NS junction us<strong>in</strong>g Eqs. (9), (10a) <strong>and</strong> (31b).<br />

The quantity ˙ QA is a non-monotonic function of <strong>in</strong>terface<br />

transmissivity, vanish<strong>in</strong>g both at low <strong>and</strong> high values of<br />

T . In the low transparency regime, ˙ QA turns out to<br />

be l<strong>in</strong>ear <strong>in</strong> T , show<strong>in</strong>g that electron transport is dom<strong>in</strong>ated<br />

by s<strong>in</strong>gle particle tunnel<strong>in</strong>g. Upon <strong>in</strong>creas<strong>in</strong>g barrier<br />

transmissivity, Andreev reflection beg<strong>in</strong>s to dom<strong>in</strong>ate<br />

quasiparticle transport, thus suppress<strong>in</strong>g heat current extraction<br />

from the N portion of the structure. The heat<br />

current ˙ QA is maximized between these two regimes at<br />

an optimal barrier transmissivity, which is temperature<br />

dependent. Furthermore, by decreas<strong>in</strong>g the latter leads<br />

to a reduction of both the optimal T <strong>and</strong> of the transmissivity<br />

w<strong>in</strong>dow where the cool<strong>in</strong>g takes place. In real<br />

NIS contacts used for cool<strong>in</strong>g applications, the average T<br />

is typically <strong>in</strong> the range 10 −6 ...10 −4 (Leivo et al., 1996;<br />

Nahum et al., 1994) correspond<strong>in</strong>g to junction specific<br />

resistances Rc (i.e., the product of the junction normal<br />

state resistance <strong>and</strong> the contact area) from tens to several<br />

thous<strong>and</strong>s Ω µm 2 . This limits the achievable ˙ QA<br />

to some pW/µm 2 . From the above discussion it appears<br />

that exploit<strong>in</strong>g low-Rc tunnel contacts is an important requirement<br />

<strong>in</strong> order to achieve large cool<strong>in</strong>g power through<br />

NIS junctions. However, <strong>in</strong> real low-Rc barriers, p<strong>in</strong>holes<br />

with a large T appear. They contribute with a large Joule<br />

heat<strong>in</strong>g (see Fig. 5, which shows the heat <strong>and</strong> charge currents<br />

through the NIS <strong>in</strong>terface as functions of voltage for<br />

different T ), <strong>and</strong> therefore tend to degrade the cool<strong>in</strong>g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!