27.12.2013 Views

PhD Thesis_RuiMSMartins.pdf - RUN UNL

PhD Thesis_RuiMSMartins.pdf - RUN UNL

PhD Thesis_RuiMSMartins.pdf - RUN UNL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fig. 2.3: Calculated integrated photon flux for the different mirror coatings (incidence angle 2.5 mrad)<br />

and the Si(111) crystals in the double-crystal monochromator. The maximum energy of 35 keV<br />

can be realized only with Si(311) monochromator crystals. Geometrical constraints of the DCM<br />

design limit the accessible energy range for Si(111) crystals to about 25 keV [152]. ................ 79<br />

Fig. 2.4: Six-circle diffractometer in the MRH of ROBL; (a) view of the χ-circle (Eulerian cradle with<br />

inner diameter of 400 mm) with the x-y-z slide mounted directly on the azimuthal ϕ-circle (front<br />

view: detector side), (b) scheme of the diffractometer with identification of the axes (view from<br />

back: beam direction). ......................................................................................................... 81<br />

Fig. 2.5: Deposition chamber mounted into the six-circle diffractometer of ROBL at ESRF (front<br />

view-detector side); (a) “old” set-up, (b) “new” set-up. .......................................................... 82<br />

Fig. 2.6: Sputtering chamber; (a) Perspective view, in the direction of the incident beam, of the sputter<br />

deposition chamber for synchrotron X-ray scattering, (b) Cross-section with interior view of the<br />

sputter deposition chamber in a central plane [58]. ................................................................ 83<br />

Fig. 2.7: Scheme of the accessible angles in off-plane scattering geometry; (a) “old” set-up [58], (b)<br />

“new” set-up [156]. ............................................................................................................. 85<br />

Fig. 2.8: Atomic content of Ti in the Ni-Ti film versus DC sputtering power applied to the Ti<br />

magnetron (with a constant power of 40 W applied to the Ni-Ti magnetron). .......................... 87<br />

Fig. 2.9: Scattering angle 2θ versus wavelength/energy. ................................................................ 88<br />

Fig. 2.10: Diffractometer D-5000 (BRUKER AXS). ..................................................................... 90<br />

Fig. 2.11: Diffractometer D-5005 (BRUKER AXS) with an enlargement of the sample holder –<br />

configuration for XRD measurements at T≥ RT. ................................................................... 91<br />

Fig. 2.12: Diffractometer D-5005 BRUKER AXS with enlargement of the sample holder –<br />

configuration for texture measurements. Picture taken during the determination of pole figures<br />

for a Ni-Ti film on MgO(100). ............................................................................................. 91<br />

Fig. 2.13: (a) RBS equipment, (b) Geometry of the RBS experiment [158]. .................................... 92<br />

Fig. 2.14: (a) AES spectrometer Microlab 310F (Fisons), (b) Aspect of a Ni-Ti sample after the AES<br />

measurement (investigated spot indicated by the arrow)......................................................... 94<br />

Fig. 2.15: (a) Transmission electron microscope CM300 SuperTWIN (Philips), (b) NiTi/SiO 2 /Si(100)<br />

sample after removing the 2 pieces of 5×4 mm 2 each for TEM preparation, (c) sample holder<br />

(double tilt). ........................................................................................................................ 95<br />

Fig. 2.16: Scanning electron microscope Hitachi S-4800 II. ........................................................... 96<br />

Fig. 2.17: Four-probe experimental apparatus (van der Pauw geometry) used to measure the electrical<br />

resistivity (ER) of the films (BIO-RAD HL 5550). ................................................................ 97<br />

Fig. 2.18: Schematic of a rectangular van der Pauw configuration. ................................................. 98<br />

Fig. 3.1: XRD peak intensities during continuous co-sputtering of Ni-Ti for 143 min without V b on a<br />

naturally oxidized Si(100) substrate. Each scan corresponds to ≈ 2 min deposition; (a) in the<br />

diffraction range 17.0 o

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!