07.01.2014 Views

PHYS08200604017 Manimala Mitra - Homi Bhabha National Institute

PHYS08200604017 Manimala Mitra - Homi Bhabha National Institute

PHYS08200604017 Manimala Mitra - Homi Bhabha National Institute

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In the above equations ... represents other terms which will not contribute to the neutral<br />

component of the potential. With all these F k ’s, VF n is given by<br />

VF n = |µH0 d |2 +|µHu 0 |2 + 1 2 |∑ Y Σi˜Σ0c R˜ν L i<br />

| 2 + 1 ∑<br />

|Y Σi H<br />

2<br />

u˜Σ 0 0c<br />

R |2 + 1 2 |∑ Y Σi H u˜ν 0 L i<br />

| (4.23)<br />

2<br />

i<br />

i<br />

i<br />

−[µHd 0 (∑ Y<br />

√<br />

Σi<br />

2˜Σ0c R˜ν L i<br />

) ∗ +c.c]+|M| 2˜Σ0c ∗ 0c<br />

R ˜Σ R +[∑ Y<br />

√<br />

Σi<br />

H u˜ν 0 L i<br />

(M˜Σ 0c<br />

R<br />

i<br />

i 2 )∗ +c.c].(4.24)<br />

As we have three generation of leptons hence the generation index i runs as i=1,2,3. The<br />

D term contribution of V neutral is given as<br />

V n D = 1 8 (g2 +g ′2 )(|H 0 d |2 −|H 0 u |2 + ∑ i<br />

|˜ν Li | 2 ) 2 . (4.25)<br />

˜Σ<br />

0c<br />

The component R which has Y = 0 and the third component of the isospin T 3 = 0 does<br />

not contributes to VD n . The soft supersymmetry breaking contributions to the neutral<br />

part of the potential is given by Vsoft n where<br />

V n<br />

soft = −(bH 0 u H0 d +c.c)+m2 H u<br />

|H 0 u |2 +m 2 H d<br />

|H 0 d |2 (4.26)<br />

+m 2 Σ˜Σ 0c∗<br />

R<br />

+ ∑ i<br />

˜Σ<br />

0c<br />

R +[˜m2˜Σ0c R<br />

m 2˜ν i˜ν ∗ L i˜ν Li +[ ∑ i<br />

˜Σ<br />

0c<br />

R +c.c]<br />

A<br />

√<br />

Σi<br />

Hu˜Σ 0 0c<br />

R˜ν L i<br />

+c.c]. 2<br />

We represent the vacuum expectation values of Hu, 0 Hd 0, ˜ν L i<br />

and R as 〈H0 u〉 = v 2 ,<br />

〈Hd 0〉 = v 1, 〈˜ν Li 〉 = u i and 〈˜Σ 0c<br />

R 〉 = ũ. We have considered a diagonal m2˜ν matrix. In terms<br />

of these vacuum expectation values the neutral component of the potential is<br />

〈V neutral 〉 = (|µ| 2 +m 2 H u<br />

)|v 2 | 2 +(|µ| 2 +m 2 H d<br />

)|v 1 | 2 −(bv 1 v 2 +c.c)<br />

˜Σ<br />

0c<br />

+ 1 8 (g2 +g ′2 )(|v 1 | 2 −|v 2 | 2 + ∑ i<br />

|u i | 2 ) 2 +(|M| 2 +m 2 Σ)|ũ| 2<br />

+ ∑ i<br />

m 2˜ν i<br />

|u i | 2 +[˜m 2 ũ 2 +c.c]+ 1 2 |∑ i<br />

Y Σi ũu i | 2 + 1 ∑<br />

|Y Σi | 2 |ũv 2 | 2<br />

2<br />

i<br />

+ 1 2 |∑ i<br />

Y Σi u i v 2 | 2 +( ∑ i<br />

A Σi<br />

√<br />

2<br />

v 2 u i ũ+c.c)−(µv 1 ( ∑ i<br />

Y Σi<br />

√<br />

2 ũu i ) ∗ +c.c)<br />

+[ ∑ i<br />

Y Σi<br />

√<br />

2<br />

v 2 u i (Mũ) ∗ +c.c]. (4.27)<br />

For simplicity we assume all the vacuum expectation values and all the parameters are<br />

real. Hence 〈V neutral 〉 simplifies to<br />

〈V neutral 〉 = (µ 2 +m 2 H u<br />

)v 2 2 +(µ 2 +m 2 H d<br />

)v 2 1 −2bv 1 v 2 + 1 8 (g2 +g ′2 )(v 2 1 −v 2 2 + ∑ i<br />

u 2 i) 2<br />

95

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!