30.08.2014 Views

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

146 From Protoplanetary Disks to Planetary Systems<br />

Figure 6.11 – Left: Mean mass-average gra<strong>in</strong> sizes vs. disk fracti<strong>on</strong>. Serpens is not <strong>in</strong>cluded because<br />

its disk fracti<strong>on</strong> is not yet known. Filled circles represent mean warm gra<strong>in</strong> sizes, and open triangles<br />

represent mean cold gra<strong>in</strong> sizes. Error bars for the mean mass-average gra<strong>in</strong> sizes are estimated us<strong>in</strong>g<br />

a M<strong>on</strong>te Carlo approach, sampl<strong>in</strong>g the errors <strong>of</strong> the <strong>in</strong>dividual objects. Right: Mean gra<strong>in</strong> sizes vs.<br />

mean cluster age. Filled symbols represent results for the warm comp<strong>on</strong>ent, while open symbols<br />

represent the cold comp<strong>on</strong>ent. <strong>The</strong> black po<strong>in</strong>ts are YSOs <strong>in</strong> Serpens, gray squares <strong>in</strong> Taurus, gray<br />

stars <strong>in</strong> Upper Sco and gray triangles <strong>in</strong> η Cha. (A color versi<strong>on</strong> <strong>of</strong> this figure is available <strong>in</strong> the<br />

<strong>on</strong>l<strong>in</strong>e journal)<br />

6.5.2 Evoluti<strong>on</strong> <strong>of</strong> Crystall<strong>in</strong>ity with Time?<br />

Literature studies <strong>of</strong> disk fracti<strong>on</strong>s <strong>of</strong> different YSO clusters with different mean ages<br />

show a trend <strong>of</strong> decreas<strong>in</strong>g disk fracti<strong>on</strong>, i.e. disks dissipat<strong>in</strong>g with time, over some few<br />

milli<strong>on</strong>s <strong>of</strong> years (Haisch et al. 2001; Hernández et al. 2008). This decrease is clearly<br />

c<strong>on</strong>firmed by the lower fracti<strong>on</strong> <strong>of</strong> disks still present <strong>in</strong> the older regi<strong>on</strong>s studied<br />

here (Upper Sco and η Cha). Accord<strong>in</strong>g to current planet formati<strong>on</strong> theories, if giant<br />

planets are to be formed from gas rich disks, the optically th<strong>in</strong>, gas-poor disks <strong>in</strong> those<br />

older regi<strong>on</strong>s should already harbor (proto-)planets. C<strong>on</strong>sider<strong>in</strong>g the evidence from<br />

small bodies <strong>in</strong> our own Solar System that suggest c<strong>on</strong>siderably higher crystall<strong>in</strong>ity<br />

fracti<strong>on</strong>s than ISM dust (see Wooden et al. 2007 and P<strong>on</strong>toppidan & Brearley 2010<br />

for reviews <strong>of</strong> latest results), a crystall<strong>in</strong>ity <strong>in</strong>crease must occur.<br />

In Figure 6.12, the mean crystall<strong>in</strong>ity fracti<strong>on</strong> per regi<strong>on</strong> is plotted aga<strong>in</strong>st two<br />

evoluti<strong>on</strong>ary parameters: disk fracti<strong>on</strong> (left) and mean age (right). With<strong>in</strong> the spread<br />

<strong>in</strong> <strong>in</strong>dividual fracti<strong>on</strong>s it is seen that, just as for gra<strong>in</strong> sizes, there is no str<strong>on</strong>g evidence<br />

<strong>of</strong> an <strong>in</strong>crease <strong>of</strong> crystall<strong>in</strong>ity fracti<strong>on</strong> with either evoluti<strong>on</strong>ary parameter. This implies<br />

that there is no evoluti<strong>on</strong> <strong>in</strong> gra<strong>in</strong> sizes or crystall<strong>in</strong>ity fracti<strong>on</strong> for the dust <strong>in</strong> the<br />

surface <strong>of</strong> disks over cluster ages <strong>in</strong> the range 1 – 8 Myr, as probed by the observati<strong>on</strong>s<br />

presented here. Essentially, there is no change <strong>in</strong> these two parameters until the disks<br />

disperse. Start<strong>in</strong>g from the assumpti<strong>on</strong> that <strong>in</strong>itially the dust <strong>in</strong> protoplanetary disks<br />

is <strong>of</strong> ISM orig<strong>in</strong> (sub-µm <strong>in</strong> size and almost completely amorphous), it appears that a<br />

modest level <strong>of</strong> crystall<strong>in</strong>ity is established <strong>in</strong> the disk surface early <strong>in</strong> the evoluti<strong>on</strong> (≤<br />

1 Myr) and then reaches some sort <strong>of</strong> steady state, irrespective <strong>of</strong> what is tak<strong>in</strong>g place<br />

<strong>in</strong> the disk midplane. Thus, the dust <strong>in</strong> the upper layers <strong>of</strong> disks does not seem to be<br />

a good tracer <strong>of</strong> the evoluti<strong>on</strong> that is tak<strong>in</strong>g place <strong>in</strong> the disk <strong>in</strong>terior, where dust is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!