30.08.2014 Views

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Evoluti<strong>on</strong> <strong>of</strong> <strong>Dust</strong> <strong>in</strong> Protoplanetary Disks 147<br />

Figure 6.12 – Left: Crystall<strong>in</strong>ity fracti<strong>on</strong> vs. disk fracti<strong>on</strong>. Serpens is not <strong>in</strong>cluded because its<br />

disk fracti<strong>on</strong> is not yet known. Filled circles represent mean warm crystall<strong>in</strong>ity, and open triangles<br />

represent mean cold crystall<strong>in</strong>ity. Uncerta<strong>in</strong>ty for crystall<strong>in</strong>ity fracti<strong>on</strong>s are estimated us<strong>in</strong>g a M<strong>on</strong>te<br />

Carlo approach, sampl<strong>in</strong>g the errors <strong>of</strong> the <strong>in</strong>dividual objects. Right: Crystall<strong>in</strong>ity fracti<strong>on</strong> vs. mean<br />

cluster age. Filled symbols represent results for the warm comp<strong>on</strong>ent, while open symbols represent<br />

the cold comp<strong>on</strong>ent. <strong>The</strong> black po<strong>in</strong>ts are YSOs <strong>in</strong> Serpens, gray squares <strong>in</strong> Taurus, gray stars <strong>in</strong><br />

Upper Sco and gray triangles <strong>in</strong> η Cha. (A color versi<strong>on</strong> <strong>of</strong> this figure is available <strong>in</strong> the <strong>on</strong>l<strong>in</strong>e<br />

journal)<br />

grow<strong>in</strong>g further for the formati<strong>on</strong> <strong>of</strong> planetesimals and planets, at many times higher<br />

crystall<strong>in</strong>ity fracti<strong>on</strong>s, to be c<strong>on</strong>sistent with evidence from Solar system bodies.<br />

If this is the case, with<strong>in</strong> 1 Myr this surface dust must be crystallized to the<br />

observed fracti<strong>on</strong> (∼10 – 20 %). This result puts c<strong>on</strong>stra<strong>in</strong>ts <strong>on</strong> the formati<strong>on</strong> <strong>of</strong><br />

circumstellar disks. One possibility is that this crystallizati<strong>on</strong> <strong>of</strong> the dust <strong>in</strong> disks<br />

mostly occurs dur<strong>in</strong>g the embedded phase. In this early stage <strong>of</strong> star formati<strong>on</strong>, where<br />

large quantities <strong>of</strong> material are still accret<strong>in</strong>g towards the protostar, a fracti<strong>on</strong> <strong>of</strong> the<br />

<strong>in</strong>fall<strong>in</strong>g material comes very close to the protostar and is heated to temperatures<br />

>800 K before it moves outwards <strong>in</strong> the disk. Alternatively, accreti<strong>on</strong> shocks or<br />

episodic heat<strong>in</strong>g events could be resp<strong>on</strong>sible for thermally anneal<strong>in</strong>g the dust <strong>in</strong> the<br />

disk surface.<br />

<strong>The</strong> 2-D models <strong>of</strong> Visser & Dullem<strong>on</strong>d (2010) treat the radial evoluti<strong>on</strong> <strong>of</strong> crystals<br />

<strong>in</strong> time. Accord<strong>in</strong>g to these models, 100 % <strong>of</strong> the dust <strong>in</strong> the <strong>in</strong>ner disk (≤ 1<br />

AU) is crystallized with<strong>in</strong> 1 Myr. With time, the <strong>in</strong>ner disk crystall<strong>in</strong>e fracti<strong>on</strong> drops<br />

as the disk spreads, and crystall<strong>in</strong>e material is transported to outer parts <strong>of</strong> the disk.<br />

<strong>The</strong>se models can help expla<strong>in</strong> the rapid crystallizati<strong>on</strong> required to account for our<br />

results. However, the models do show a decrease <strong>in</strong> <strong>in</strong>ner disk (≤ 1 AU) crystall<strong>in</strong>ity<br />

fracti<strong>on</strong> with time, which is not supported by our results. S<strong>in</strong>ce these models do not<br />

discrim<strong>in</strong>ate <strong>on</strong> vertical structure, but rather present crystall<strong>in</strong>ity fracti<strong>on</strong>s that are<br />

<strong>in</strong>tegrated over all heights at a given radius, this decrease <strong>in</strong> crystall<strong>in</strong>ity fracti<strong>on</strong> is<br />

not necessarily c<strong>on</strong>nected to the surface <strong>of</strong> the disk. Thus the decrease <strong>in</strong> crystall<strong>in</strong>ity<br />

fracti<strong>on</strong> with time found <strong>in</strong> the models <strong>of</strong> Visser & Dullem<strong>on</strong>d (2010) could be expla<strong>in</strong>ed<br />

as a decrease <strong>in</strong> crystall<strong>in</strong>ity fracti<strong>on</strong> just <strong>in</strong> the disk midplane where the bulk<br />

<strong>of</strong> the mass resides, but not <strong>in</strong> the surface layers, as our data <strong>in</strong>dicate. That would

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!