30.08.2014 Views

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Evoluti<strong>on</strong> <strong>of</strong> <strong>Dust</strong> <strong>in</strong> Protoplanetary Disks 33<br />

2.4.4 Effective Temperature<br />

Effective temperatures (T eff ) were determ<strong>in</strong>ed us<strong>in</strong>g calibrati<strong>on</strong>s relat<strong>in</strong>g them to<br />

spectral types. For stars earlier than M0, the relati<strong>on</strong>ship established by Keny<strong>on</strong><br />

& Hartmann (1995) was adopted, while for later type stars that by Luhman et al.<br />

(2003) was used. This method was also used <strong>in</strong> the determ<strong>in</strong>ati<strong>on</strong> <strong>of</strong> T eff for similar<br />

study <strong>on</strong> another <strong>of</strong> the clouds observed by the c2d, Cha II (Spezzi et al. 2008). <strong>The</strong><br />

errors <strong>in</strong> T eff come directly from the errors <strong>in</strong> the spectral type determ<strong>in</strong>ati<strong>on</strong>.<br />

2.5 Visual Ext<strong>in</strong>cti<strong>on</strong><br />

Once the spectral types are known, we used synthetic NEXTGEN spectra (Hauschildt<br />

et al. 1999) and the ext<strong>in</strong>cti<strong>on</strong> law by We<strong>in</strong>gartner & Dra<strong>in</strong>e (2001) to compute the<br />

observed ext<strong>in</strong>cti<strong>on</strong> toward our targets (A V Obs). <strong>The</strong> appropriate synthetic spectrum<br />

for each spectral type was ext<strong>in</strong>cted with A V rang<strong>in</strong>g from 0 to 20 mag (with <strong>in</strong>crements<br />

<strong>of</strong> 0.5 mag) and a χ 2 m<strong>in</strong>imizati<strong>on</strong> was performed between the observed and<br />

synthetic ext<strong>in</strong>cted spectra to estimate the ext<strong>in</strong>cti<strong>on</strong>. We estimate an <strong>in</strong>tr<strong>in</strong>sic error<br />

<strong>in</strong> our A V Obs determ<strong>in</strong>ati<strong>on</strong>s <strong>of</strong> 1.0-1.5 mag by compar<strong>in</strong>g our source 98 (spectral<br />

type A3) with the A3 V absolute flux standard star Kopff 27 (St<strong>on</strong>e 1977), from the<br />

ING list <strong>of</strong> spectro-photometric standard stars. This error <strong>in</strong>cludes the uncerta<strong>in</strong>ty<br />

<strong>in</strong> the total ext<strong>in</strong>cti<strong>on</strong> determ<strong>in</strong>ati<strong>on</strong> and the fact that the fiber-fed spectra are not<br />

flux calibrated.<br />

Table 2.2 compares our ext<strong>in</strong>cti<strong>on</strong> values from the optical spectra (A V Obs) with<br />

those from the “c2d” ext<strong>in</strong>cti<strong>on</strong> maps (A V Cloud). <strong>The</strong> “c2d” map was c<strong>on</strong>structed<br />

us<strong>in</strong>g the average ext<strong>in</strong>cti<strong>on</strong> toward background stars with<strong>in</strong> a 5 ′ beam. Thus, these<br />

values give an <strong>in</strong>dicati<strong>on</strong> <strong>of</strong> the average amount <strong>of</strong> ext<strong>in</strong>cti<strong>on</strong> that the cloud produces<br />

<strong>in</strong> a given area, albeit with a large beam. More <strong>in</strong>formati<strong>on</strong> about this ext<strong>in</strong>cti<strong>on</strong><br />

determ<strong>in</strong>ati<strong>on</strong> and its uncerta<strong>in</strong>ties can be found <strong>in</strong> the “c2d” delivery documentati<strong>on</strong><br />

(Evans et al. 2007), and <strong>in</strong> Harvey et al. (2006).<br />

Figure 2.6 compares the two estimates <strong>of</strong> ext<strong>in</strong>cti<strong>on</strong> for our targets described<br />

above. A large spread around the l<strong>in</strong>e <strong>of</strong> equal ext<strong>in</strong>cti<strong>on</strong> is seen. This dispersi<strong>on</strong> is<br />

useful to p<strong>in</strong>po<strong>in</strong>t objects with peculiar ext<strong>in</strong>cti<strong>on</strong> characteristics. Tak<strong>in</strong>g <strong>in</strong>to account<br />

a typical error <strong>of</strong> 2 mag <strong>in</strong> both ext<strong>in</strong>cti<strong>on</strong> determ<strong>in</strong>ati<strong>on</strong>s and the large beam sizes for<br />

the “c2d” ext<strong>in</strong>cti<strong>on</strong> values, the larger differences might be expla<strong>in</strong>ed by two effects:<br />

1. For the sources with A V Obs A V Cloud, an <strong>in</strong>dicati<strong>on</strong> <strong>of</strong> their depth <strong>in</strong> the<br />

cloud can be obta<strong>in</strong>ed. Specifically, such sources are likely embedded <strong>in</strong> the cloud, or<br />

located <strong>in</strong> fr<strong>on</strong>t <strong>of</strong> it.<br />

2. If A V Obs >> A V Cloud (shaded area <strong>in</strong> Figure 2.6), the molecular cloud<br />

by itself is unlikely to expla<strong>in</strong> such ext<strong>in</strong>cti<strong>on</strong>. On the <strong>on</strong>e hand, for young stars<br />

embedded <strong>in</strong> their parent envelopes, an extra ext<strong>in</strong>cti<strong>on</strong> compared to the local average<br />

<strong>in</strong> the cloud is naturally expected. Such embedded sources, however, are also expected<br />

to show a str<strong>on</strong>g IR excess. On the other hand, stars at distances much larger than<br />

that <strong>of</strong> the cloud are also likely to have an enhanced ext<strong>in</strong>cti<strong>on</strong>. We argue that

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!