30.08.2014 Views

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

Observational Constraints on The Evolution of Dust in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8 Introducti<strong>on</strong><br />

1.3.1.3 Processes Affect<strong>in</strong>g the Disk<br />

<strong>The</strong> evoluti<strong>on</strong> <strong>of</strong> disks is a comb<strong>in</strong>ati<strong>on</strong> <strong>of</strong> external and <strong>in</strong>ternal processes. Be<strong>in</strong>g the<br />

ma<strong>in</strong> source <strong>of</strong> radiati<strong>on</strong> <strong>of</strong> the system, the central star affects the disk dispersal directly.<br />

Stellar w<strong>in</strong>ds can sweep-up and remove some <strong>of</strong> the disk material. Furthermore,<br />

energetic UV and X-ray phot<strong>on</strong>s emitted by the central star (or a massive nearby star)<br />

heat the disk surface and cause thermal pressure-driven hydrodynamic mass outflows<br />

from the disk. This process is called photoevaporati<strong>on</strong> and, <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with the<br />

viscous evoluti<strong>on</strong> <strong>of</strong> disks, has been shown to be a very effective mechanism for the<br />

dispersal <strong>of</strong> disks (Hollenbach et al. 2000; Clarke et al. 2001; Alexander et al. 2006a,b;<br />

Ercolano et al. 2009; Górny et al. 2009; Owen et al. 2010). Depend<strong>in</strong>g <strong>on</strong> the energy<br />

<strong>of</strong> the phot<strong>on</strong>s, they can be resp<strong>on</strong>sible for open<strong>in</strong>g <strong>in</strong>ner gaps <strong>in</strong> those disks, or<br />

<strong>in</strong>duc<strong>in</strong>g mass outflows <strong>in</strong> the outer disk, where most <strong>of</strong> the mass resides.<br />

While some material is be<strong>in</strong>g expelled from the disk, accreti<strong>on</strong> flows <strong>on</strong>to the<br />

star c<strong>on</strong>t<strong>in</strong>ue. <strong>The</strong> <strong>in</strong>ner disk is disrupted by the stellar magnetic field, result<strong>in</strong>g<br />

<strong>in</strong> magnetospheric accreti<strong>on</strong>, <strong>in</strong> which disk material is channelled al<strong>on</strong>g the magnetic<br />

field l<strong>in</strong>es <strong>in</strong>to the star (Koenigl 1991). This material <strong>in</strong>fall produces high temperature<br />

optical and UV c<strong>on</strong>t<strong>in</strong>uum emissi<strong>on</strong> and str<strong>on</strong>g emissi<strong>on</strong> l<strong>in</strong>es, the str<strong>on</strong>gest <strong>of</strong> them<br />

be<strong>in</strong>g Hα (Calvet & Hartmann 1992).<br />

In additi<strong>on</strong> to the external processes described above, theory, observati<strong>on</strong>s and<br />

laboratory experiments po<strong>in</strong>t to processes that affect the dust <strong>in</strong>side disks (Weidenschill<strong>in</strong>g<br />

1980; Dom<strong>in</strong>ik & Tielens 1997; Blum & Wurm 2008) and thereby also the<br />

disk structure (Dullem<strong>on</strong>d & Dom<strong>in</strong>ik 2004). <strong>The</strong> high disk densities facilitate particle<br />

collisi<strong>on</strong> and dust coagulati<strong>on</strong>. As they grow larger, particles settle gravitati<strong>on</strong>ally<br />

towards the disk midplane, mak<strong>in</strong>g it an even denser envir<strong>on</strong>ment and therefore more<br />

pr<strong>on</strong>e to further growth <strong>in</strong>to roughly km-sized bodies called planetesimals. <strong>The</strong>se<br />

steps are the early stages <strong>of</strong> planet formati<strong>on</strong>. <str<strong>on</strong>g>Observati<strong>on</strong>al</str<strong>on</strong>g>ly, particle coagulati<strong>on</strong><br />

is equivalent to the removal <strong>of</strong> the small dust comp<strong>on</strong>ent, manifest<strong>in</strong>g itself as a flatten<strong>in</strong>g<br />

<strong>of</strong> the disk and a decrease <strong>of</strong> the <strong>in</strong>frared excess <strong>of</strong> a disk (Dullem<strong>on</strong>d et al.<br />

2001).<br />

Debris disks, composed <strong>of</strong> large planetesimal rocks and smaller bodies that are<br />

produced <strong>in</strong> situ by collisi<strong>on</strong>s <strong>of</strong> planetesimals, have been found around both evolved<br />

and young stars (Rieke et al. 2005; Su et al. 2006; Gautier et al. 2007; Wyatt 2008;<br />

Carpenter et al. 2009). This phase is understood to follow the protoplanetary disk<br />

phase, when gas is no l<strong>on</strong>ger present.<br />

1.3.2 Planet Formati<strong>on</strong><br />

Because the very small dust gra<strong>in</strong>s that <strong>in</strong>itially compose a disk are coupled to the<br />

gas, they move slowly (few cm s −1 ) <strong>in</strong> Brownian moti<strong>on</strong>. <strong>The</strong>se low velocities allow<br />

gra<strong>in</strong>s to grow via pairwise collisi<strong>on</strong> <strong>in</strong> regi<strong>on</strong>s <strong>of</strong> high disk densities (Blum & Wurm<br />

2008). Bigger particles settle faster to the disk mid-plane where, <strong>in</strong> a similar fashi<strong>on</strong>,<br />

particles will c<strong>on</strong>t<strong>in</strong>ue to coagulate. In this manner particles may grow up to meters<br />

<strong>in</strong> size, at which po<strong>in</strong>t their dynamics beg<strong>in</strong> to decouple from the gas. No l<strong>on</strong>ger be<strong>in</strong>g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!