04.11.2014 Views

Session B.pdf - Clarkson University

Session B.pdf - Clarkson University

Session B.pdf - Clarkson University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

If an ice cover presents, the composite resistances are respectively:<br />

2 2 2<br />

2 2 2<br />

ρ g n<br />

C<br />

u + v<br />

ρ g n<br />

C<br />

u + v<br />

τ<br />

i x<br />

+ τb<br />

x<br />

=<br />

u τ v<br />

1/ 3<br />

i y<br />

+ τb<br />

y<br />

=<br />

, (5)<br />

1/ 3<br />

h<br />

h<br />

where, n b =bed roughness; n c =composite Manning’s roughness. In this paper, the<br />

composite Manning’s coefficent is taken to be (Mao and Ma, 2002)<br />

⎛ P n +<br />

⎜<br />

⎝ P<br />

P<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

3/2<br />

3/2<br />

b b i i 2/3<br />

n = ⎜<br />

⎟<br />

C<br />

. (6)<br />

Water temperature can be expressed as a two-dimensional convection-diffusion equation<br />

in terms of conservation of thermal energy:<br />

∂<br />

∂t<br />

( ρC<br />

AT) + ( QρC<br />

T) + ( QρC<br />

T)<br />

P<br />

∂ ⎛<br />

= ⎜AE<br />

xρC<br />

∂x<br />

⎝<br />

P<br />

∂<br />

∂x<br />

∂T<br />

⎞<br />

∂x<br />

⎟ +<br />

⎠<br />

P<br />

∂<br />

∂y<br />

∂ ⎛<br />

⎜AE<br />

yρC<br />

∂y<br />

⎝<br />

P<br />

P<br />

=<br />

∂T<br />

⎞<br />

⎟ + B Σ S,<br />

∂y<br />

⎠<br />

where T = water temperature; C p = specific heat of water; A = area; B = surface width;<br />

E x , E y are dispersion coefficient in x- and y-direction respectively; ∑S = net heat flux<br />

from water to air, per unit surface area of flow. Assuming E x = E y = E and Q remaining<br />

constant, the above equation can be re-written as<br />

2<br />

∂ T ∂ T ∂ T ⎛ ∂ T<br />

+ u + v = E<br />

2<br />

t x y<br />

⎜<br />

∂ ∂ ∂ ⎝ ∂ x<br />

2<br />

∂ T ⎞<br />

+ +<br />

2<br />

y<br />

⎟<br />

∂ ⎠<br />

ρ<br />

(7)<br />

B<br />

Σ S . (8)<br />

C A<br />

The equations for surface and suspended ice are respectively (Lal and Shen, 1991)<br />

P<br />

∂ C<br />

∂ t<br />

S<br />

∂ C<br />

+ u<br />

∂ x<br />

S<br />

∂ C<br />

+ v<br />

∂ y<br />

S<br />

=<br />

−<br />

ρ<br />

i<br />

B<br />

L<br />

i<br />

A<br />

∑ S<br />

+<br />

α<br />

A<br />

⎛ V<br />

⎜ −<br />

⎝<br />

⎞<br />

⎟<br />

⎠<br />

C<br />

z<br />

1<br />

C<br />

u ⎟ ; (9)<br />

i<br />

∂ C<br />

∂ t<br />

c<br />

∂ CC<br />

+ u<br />

∂ x<br />

∂ CC<br />

+ v<br />

∂ y<br />

= −<br />

ρ<br />

i<br />

B<br />

L<br />

i<br />

∑ S<br />

A<br />

V<br />

−<br />

α A<br />

⎜<br />

⎛ −<br />

⎝<br />

⎞<br />

⎟<br />

⎠<br />

z<br />

1 CC<br />

u ⎟ , (10)<br />

i<br />

where, C s = surface-ice volumetric concentration; C c = suspended ice volumetric<br />

concentration; L i = latent heat of water fusion; α = an empirical coefficient quantifying<br />

the rate of supply to the surface ice from suspended frazil ice (Wu, 2002) ; u i = buoyant<br />

velocity; V z = vertical component of current turbulence. From the mass conservation of<br />

surface ice at the leading edge, the rate of ice-cover progression of leading edge is (Lal<br />

and Shen, 1991):<br />

V<br />

P<br />

=<br />

B 0<br />

t<br />

i<br />

Q<br />

i<br />

S<br />

−<br />

Q<br />

i<br />

( 1 − e<br />

j<br />

) − ( QS<br />

− Qu<br />

)/VSCP<br />

u<br />

, (11)<br />

where V p = progression rate; e j = overall porosity of ice cover; Q u = volumetric rate of<br />

ice swept at the leading edge;<br />

i<br />

Q<br />

S = volumetric rate of surface-ice discharge; B 0 = top<br />

186

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!