04.11.2014 Views

Session B.pdf - Clarkson University

Session B.pdf - Clarkson University

Session B.pdf - Clarkson University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TRANSFORMATION AND COMPUTATION OF BASIC EQUATIONS<br />

Let ξx<br />

= ξx<br />

⋅ J , ξ<br />

y<br />

= ξ<br />

y<br />

⋅ J , η<br />

x<br />

= ηx<br />

⋅ J , η<br />

y<br />

= ηy<br />

⋅ J , uξ = uξ<br />

x<br />

+ vξ<br />

y<br />

, vη = uηx<br />

+ vηy<br />

,<br />

qξ<br />

= q x<br />

ξ<br />

x<br />

+ qvξ<br />

y<br />

, qη = q x<br />

ηx<br />

+ qy<br />

ηy<br />

, in which uξ<br />

and are velocities in ξ and η<br />

directions respectively. The governing equations under BFC can be deduced through<br />

coordinate transformation of equations (1) − (3):<br />

∂<br />

∂<br />

h<br />

t<br />

1 ∂ qξ<br />

+<br />

J ∂ ξ<br />

+<br />

1<br />

J<br />

∂ q<br />

η<br />

∂ η<br />

= 0 , (16)<br />

∂q<br />

∂t<br />

x<br />

+<br />

1<br />

J<br />

∂<br />

∂ξ<br />

qxq<br />

(<br />

h<br />

ξ<br />

+ ξ<br />

x<br />

gh<br />

2<br />

2<br />

) +<br />

1<br />

J<br />

∂<br />

∂η<br />

qxq<br />

(<br />

h<br />

η<br />

+ η<br />

x<br />

2<br />

gh<br />

) = bx<br />

, (17)<br />

2<br />

∂q<br />

y<br />

∂t<br />

+<br />

1<br />

J<br />

∂<br />

∂ξ<br />

qxq<br />

(<br />

h<br />

ξ<br />

+ ξ<br />

y<br />

gh<br />

2<br />

2<br />

) +<br />

1<br />

J<br />

∂<br />

∂η<br />

qyq<br />

(<br />

h<br />

η<br />

+ η<br />

y<br />

gh<br />

2<br />

2<br />

) = b . (18)<br />

y<br />

The boundary conditions can be expressed as A ϕ + B∂ϕ<br />

/ ∂n<br />

= C with A, B, and C<br />

given, ∂ ϕ / ∂n is normal derivative at boundary, ϕ is any variable desired, gradient of<br />

ρ<br />

function f is ∇f<br />

= ( fξξx<br />

+ fηηx<br />

) i + ( fξξ<br />

y<br />

+ fηηy<br />

)j . The transformation equations of<br />

boundary conditions can be obtained as:<br />

∂ϕ<br />

∂n<br />

( ξ)<br />

=<br />

J<br />

1<br />

q<br />

11<br />

( q<br />

11<br />

∂ϕ<br />

+ q<br />

∂ξ<br />

12<br />

∂ϕ ∂ϕ 1 ∂ϕ ∂ϕ<br />

) = ( q12<br />

+ q22<br />

)<br />

( η)<br />

∂η ∂n<br />

J q ∂ξ ∂η<br />

22<br />

, (19)<br />

in which: q<br />

2 2 2 2<br />

ξx + ξy<br />

= xη<br />

+ = α q 12<br />

= ξxηx<br />

+ ξyηy<br />

= −β<br />

q<br />

22<br />

= ηx<br />

+ ηy<br />

= γ .<br />

11<br />

= yη<br />

As illustrated in Fig.4, ABCD is control volume, (i, j) is control node,<br />

= ( h,<br />

q , q ) T<br />

2<br />

2<br />

, F ( q , q / h + gh / 2, q q / h) T<br />

area. Let U<br />

x y<br />

=<br />

x x<br />

x y<br />

,<br />

2<br />

2 T<br />

G = ( q , q q / h,<br />

/ h + gh / 2)<br />

, then equations (16) − (18) give:<br />

where<br />

y<br />

x y<br />

q y<br />

U<br />

= U<br />

∆ t<br />

− ( ) ( H<br />

∆ξ ∆η<br />

+ H<br />

+ H<br />

+ H<br />

n+<br />

1 n<br />

i, j i,<br />

j<br />

AB BC CD DA<br />

)<br />

2<br />

∆ξ∆η<br />

2<br />

is control<br />

, (20)<br />

H = F AB<br />

∆η<br />

, H = G BC<br />

∆ξ<br />

, H −F<br />

∆η, H = H DA<br />

∆ξ<br />

. The two-step<br />

AB<br />

BC<br />

CD<br />

=<br />

CD<br />

MacCormack scheme is used with stagger difference scheme. Boundary conditions<br />

include incoming flow, outflow and non-penetrable wall condition u ⋅ n = 0 .<br />

¦З<br />

DA<br />

j+1<br />

j<br />

j-1<br />

C<br />

D<br />

(i,j)<br />

B<br />

A<br />

i-1 i i+1<br />

¦О<br />

Fig. 4. Discrete scheme<br />

188

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!