19.01.2015 Views

EGAS41 - Swansea University

EGAS41 - Swansea University

EGAS41 - Swansea University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

41 st EGAS CP 128 Gdańsk 2009<br />

Line shapes of optical Feshbach resonances near the<br />

intercombination transition of bosonic Ytterbium<br />

M. Borkowski 1,∗ , R. Ciury̷lo 1 , P.S. Julienne 2 , S. Tojo 3 , K. Enomoto 4 , Y. Takahashi 5<br />

1 Instytut Fizyki, Uniwersytet Miko̷laja Kopernika, ul. Grudzi¸adzka 5/7, 87–100 Toruń, Poland.<br />

2 Joint Quantum Institute, National Institute of Standards and Technology and The <strong>University</strong><br />

of Maryland, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland 20899-8423, USA.<br />

3 Department of Physics, Faculty of Science, Gakushuin <strong>University</strong>, Tokyo 171-8588, Japan.<br />

4 Department of Physics, <strong>University</strong> of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.<br />

5 Department of Physics, Graduate School of Science, Kyoto <strong>University</strong>, Kyoto 606-8502,<br />

Japan.<br />

∗ Corresponding author: mateusz.borkowski@fizyka.umk.pl,<br />

The properties of bosonic Ytterbium photoassociation spectra near the intercombination<br />

transition 1 S 0 – 3 P 1 are studied theoretically at ultra low temperatures. We demonstrate<br />

how the shapes and intensities of rotational components of optical Feshbach resonances<br />

are affected by mass tuning of the scattering properties of the two colliding ground state<br />

atoms. Particular attention is given to the relationship between the magnitude of the<br />

scattering length and the occurrence of shape resonances in higher partial waves of the<br />

van der Waals system. We develop a mass scaled model of the excited state potential<br />

that represents the experimental data for different isotopes. The shape of the rotational<br />

photoassociation spectrum for various bosonic Yb isotopes can be qualitatively different.<br />

Γ eg<br />

/h [MHz]<br />

K [cm 3 /s]<br />

10 2<br />

10 0<br />

172<br />

Yb, E(Je =1)= -2237 MHz<br />

10 -2<br />

10 -4<br />

10 µK<br />

2×10 -14<br />

0<br />

2×10 -15<br />

100 µK<br />

1×10 -15<br />

J e =1 J e =3 J e =5<br />

0<br />

10 -6<br />

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0<br />

ε r<br />

/k B<br />

[K]<br />

4×10 -14 s-wave<br />

d-wave<br />

g-wave<br />

i-wave<br />

2×10 -16<br />

1 mK<br />

0<br />

-2300 -2200 -2100 -2000<br />

∆/h [MHz]<br />

Γ eg<br />

/h [MHz]<br />

K [cm 3 /s]<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0<br />

ε r<br />

/k B<br />

[K]<br />

2×10 -15 10 µK<br />

s-wave<br />

1×10 -15<br />

d-wave<br />

g-wave<br />

i-wave<br />

0<br />

6×10 -15<br />

3×10 -15<br />

0<br />

174<br />

Yb, E(Je = 1) = -1974 MHz<br />

100 µK<br />

1×10 -15 1 mK 4×10 -17<br />

5×10 -16<br />

2×10 -17<br />

0<br />

0<br />

-2000 -1900 -1800 -1700<br />

∆/h [MHz]<br />

Figure 1: For the two isotopes: 172 Yb and 174 Yb the light induced width Γ eg is shown as<br />

a function of the collision energy ε r for a few lowest partial waves. The two-body loss rate<br />

coefficient K is also presented on the plot as a function of the laser detuning ∆, at different<br />

temperatures of the ultra cold gas. Results obtained at 100 µK clearly demonstrate the impact<br />

of shape resonances (g-wave in the case of 172 Yb and d-wave in the case of 174 Yb) on the<br />

simulated spectra.<br />

188

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!