19.01.2015 Views

EGAS41 - Swansea University

EGAS41 - Swansea University

EGAS41 - Swansea University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

41 st EGAS CP 15 Gdańsk 2009<br />

Nonresonant corrections for the optical resonance frequency<br />

measurements in hydrogen atom<br />

L. Labzowsky 1,2 , G. Schedrin 1 , D. Solovyev 1 , E. Chernovskaya 1,∗ ,<br />

G. Plunien 3 , S. Karshenboim 4,5<br />

1 V.A. Fock Institute of Physics, St. Petersburg State <strong>University</strong>, 198904, Uljanovskaya 1,<br />

Petrodvorets, St. Petersburg, Russia<br />

2 Petersburg Nuclear Physics Institute, 188350, Gatchina, St. Petersburg, Russia<br />

3 Institut für Theoretische Physik, Technische Universität Dresden, Mommsenstrasse 13,<br />

D-01062, Dresden, Germany<br />

4 D.I. Mendeleev Institute for Metrology, St. Petersburg, 190005, Russia<br />

5 Max-Planck Institut für Quantenoptik, Garching, 85748, Germany<br />

∗ Corresponding author: jkfizfak@rambler.ru<br />

The deviation of the natural spectral line profile from the Lorentz shape for the optical<br />

resonant frequency measurements is considered. This deviation leads to an asymmetry,<br />

which is mainly due to nonresonant correction to the resonant Lorentz profile. The nonresonant<br />

corrections are studied for the different types of the atomic resonant experiments<br />

[1,2]. The most accurate recent optical resonance experiments [3,4] are analyzed, i.e. the<br />

two-photon 1s–2s resonance excitation of the hydrogen atom with the delayed decay in<br />

the external electric field. The description of the nonresonant correction in the latter case<br />

requires the employment of QED with different in- and out-Hamiltonians.<br />

The nonresonant corrections for this experiment are investigated and found to be<br />

about 10 −5 Hz, while the recent experimental uncertainty is 34 Hz and in the near feature<br />

is expected to be few Hz. The projected 1s–2s resonance excitation experiment with the<br />

three-photon ionization detection (which is now in progress) is also considered.<br />

References<br />

[1] L.N. Labzowsky, D.A. Solovyev, G. Plunien, G. Soff, Phys. Rev. Lett. 87, 143003<br />

(2001); Can. J. Phys. 80, 1187 (2002); Phys. Rev. A 65, 05 02 (2002)<br />

[2] L. Labzowsky, G. Schedrin, D. Solovyev, G. Plunien, Phys. Rev. Lett. 98, 203003<br />

(2007)<br />

[3] A. Huber, B. Gross, M. Weitz, T.W. Hänsch, Phys. Rev. A 59 , 1844 (1999)<br />

M.Niering, R. Holzwarth, J. Reichert, P. Pokasov, Th. Udem, M.Weitz, T.W. Hänsch,<br />

P. Lemond, G. Semtarelli, M. Abgrall, P. Lourent, C. Salomon, A. Clairon, Phys. Rev.<br />

Lett. 84, 5496 (2000)<br />

[4] M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, Th. Udem, T.W. Hänsch,<br />

M. Abgrall, J. Grunert, I. Maksimovic, S. Bize, H. Marion, F. Pereira Dos Santos, P.<br />

Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, M. Haas, U.D. Jentschura,<br />

C.H. Keitel, Phys. Rev. Lett. 92, 230802 (2004)<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!