19.01.2015 Views

EGAS41 - Swansea University

EGAS41 - Swansea University

EGAS41 - Swansea University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

41 st EGAS CP 206 Gdańsk 2009<br />

M1-E2 interference in the Zeeman spectra of 6s 2 6p n<br />

(n = 1, 2, 3) ground configurations of Pb II, Pb I and Bi I<br />

S. Werbowy, J. Kwela ∗<br />

Institute of Experimental Physics, <strong>University</strong> of Gdansk, ul. Wita Stwosza 57,<br />

80-952 Gdansk, Poland<br />

∗ Corresponding author: fizjk@univ.gda.pl<br />

The measurement of the ratio D=A E2 /(A E2 + A M1 ) of the electric-quadrupole (E2) and<br />

magnetic-dipol (M1) transition probabilities in mixed forbidden lines can provide stringent<br />

test of theoretical wave-function calculations. In addition accurate knowledge of this<br />

quantity is essential for existing and future measurements of parity nonconserving optical<br />

rotation.<br />

According to [1], the spontaneous transition probability for a single photon emission<br />

in the presence of the magnetic field can be expressed as:<br />

a ab = (1 − D)a M1<br />

ab<br />

+ Da E2<br />

ab ± 2 √<br />

D(1 − D)a M1−E2<br />

ab , (1)<br />

where D is percentage admixture of E2 radiation, a M1<br />

ab and a E2<br />

ab are pure magnetic-dipol<br />

and electric-quadrupole components, respectively and the cross term a M1+E2<br />

ab describes<br />

the interference effect. The sign of the interference term in (1) can be predicted if the<br />

wave functions of the electronic states involved in the transition are known.<br />

Our experimental results are presented in Table 1.<br />

Table 1: Values of the electric quadrupole admixtures and phase signs in mixed type transitions<br />

in lead and bismuth.<br />

Configuration Transition E2 admixture Phase sign φ<br />

6s 2 6p Pb II ( 2 P 3/2 - 2 P 1/2 ) 710.2nm 4.25 ± 0.18 % [2] negative<br />

6s 2 6p 2 Pb I ( 1 D 2 - 3 P 1 ) 733.2nm 4.12 ± 0.07 % [2] positive<br />

6s 2 6p 3 Bi I ( 2 D 3/2 - 4 S 3/2 ) 875.5nm 0.70 ± 0.11 % [3] negative<br />

( 2 D 5/2 - 4 S 3/2 ) 647.6nm 17.5 ± 0.4 % [3] positive<br />

( 2 P 1/2 - 4 S 3/2 ) 461.5nm 7.84 ± 0.14 % [3] positive<br />

( 2 P 3/2 - 2 D 3/2 ) 459.7nm 3.49 ± 0.35 % [4] positive<br />

( 2 P 3/2 - 2 D 5/2 ) 564.0nm 37.1 ± 1.8 % [4] negative<br />

Acknowledgment<br />

This work was supported by the BW grant: 5200-5-0164-9.<br />

References<br />

[1] S. Werbowy, J. Kwela, R. Drozdowski, J. Heldt, Eur. Phys. J. D 39 5 (2006)<br />

[2] S. Werbowy, J. Kwela, J. Phys. B: At. Mol. Opt. Phys. 42 065002 (2009)<br />

[3] S. Werbowy, J. Kwela, Phys. Rev. A 77, 023410 (2008)<br />

[4] S. Werbowy, J. Kwela, Can. J. Phys. (2009) - in press<br />

266

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!